Step |
Hyp |
Ref |
Expression |
1 |
|
hoi2toco.1 |
|- F/ k ph |
2 |
|
hoi2toco.c |
|- I = ( k e. X |-> <. ( A ` k ) , ( B ` k ) >. ) |
3 |
2
|
funmpt2 |
|- Fun I |
4 |
3
|
a1i |
|- ( ph -> Fun I ) |
5 |
4
|
adantr |
|- ( ( ph /\ k e. X ) -> Fun I ) |
6 |
|
simpr |
|- ( ( ph /\ k e. X ) -> k e. X ) |
7 |
2
|
dmeqi |
|- dom I = dom ( k e. X |-> <. ( A ` k ) , ( B ` k ) >. ) |
8 |
7
|
a1i |
|- ( ph -> dom I = dom ( k e. X |-> <. ( A ` k ) , ( B ` k ) >. ) ) |
9 |
|
opex |
|- <. ( A ` k ) , ( B ` k ) >. e. _V |
10 |
9
|
2a1i |
|- ( ph -> ( k e. X -> <. ( A ` k ) , ( B ` k ) >. e. _V ) ) |
11 |
1 10
|
ralrimi |
|- ( ph -> A. k e. X <. ( A ` k ) , ( B ` k ) >. e. _V ) |
12 |
|
dmmptg |
|- ( A. k e. X <. ( A ` k ) , ( B ` k ) >. e. _V -> dom ( k e. X |-> <. ( A ` k ) , ( B ` k ) >. ) = X ) |
13 |
11 12
|
syl |
|- ( ph -> dom ( k e. X |-> <. ( A ` k ) , ( B ` k ) >. ) = X ) |
14 |
8 13
|
eqtr2d |
|- ( ph -> X = dom I ) |
15 |
14
|
adantr |
|- ( ( ph /\ k e. X ) -> X = dom I ) |
16 |
6 15
|
eleqtrd |
|- ( ( ph /\ k e. X ) -> k e. dom I ) |
17 |
|
fvco |
|- ( ( Fun I /\ k e. dom I ) -> ( ( [,) o. I ) ` k ) = ( [,) ` ( I ` k ) ) ) |
18 |
5 16 17
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( ( [,) o. I ) ` k ) = ( [,) ` ( I ` k ) ) ) |
19 |
9
|
a1i |
|- ( ( ph /\ k e. X ) -> <. ( A ` k ) , ( B ` k ) >. e. _V ) |
20 |
2
|
fvmpt2 |
|- ( ( k e. X /\ <. ( A ` k ) , ( B ` k ) >. e. _V ) -> ( I ` k ) = <. ( A ` k ) , ( B ` k ) >. ) |
21 |
6 19 20
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( I ` k ) = <. ( A ` k ) , ( B ` k ) >. ) |
22 |
21
|
fveq2d |
|- ( ( ph /\ k e. X ) -> ( [,) ` ( I ` k ) ) = ( [,) ` <. ( A ` k ) , ( B ` k ) >. ) ) |
23 |
|
df-ov |
|- ( ( A ` k ) [,) ( B ` k ) ) = ( [,) ` <. ( A ` k ) , ( B ` k ) >. ) |
24 |
23
|
eqcomi |
|- ( [,) ` <. ( A ` k ) , ( B ` k ) >. ) = ( ( A ` k ) [,) ( B ` k ) ) |
25 |
24
|
a1i |
|- ( ( ph /\ k e. X ) -> ( [,) ` <. ( A ` k ) , ( B ` k ) >. ) = ( ( A ` k ) [,) ( B ` k ) ) ) |
26 |
18 22 25
|
3eqtrd |
|- ( ( ph /\ k e. X ) -> ( ( [,) o. I ) ` k ) = ( ( A ` k ) [,) ( B ` k ) ) ) |
27 |
1 26
|
ixpeq2d |
|- ( ph -> X_ k e. X ( ( [,) o. I ) ` k ) = X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |