| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iftrue |  |-  ( A < B -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) | 
						
							| 2 | 1 | adantl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) | 
						
							| 3 |  | volico |  |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) | 
						
							| 4 | 3 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) | 
						
							| 5 |  | simpll |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> A e. RR ) | 
						
							| 6 |  | simplr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> B e. RR ) | 
						
							| 7 |  | simpr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> A < B ) | 
						
							| 8 | 5 6 7 | ltled |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> A <_ B ) | 
						
							| 9 | 8 | iftrued |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> if ( A <_ B , ( B - A ) , 0 ) = ( B - A ) ) | 
						
							| 10 | 2 4 9 | 3eqtr4d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> ( vol ` ( A [,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) | 
						
							| 11 | 10 | adantlr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ A < B ) -> ( vol ` ( A [,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) | 
						
							| 12 |  | simpll |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ -. A < B ) -> ( A e. RR /\ B e. RR ) ) | 
						
							| 13 | 12 | simpld |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ -. A < B ) -> A e. RR ) | 
						
							| 14 | 12 | simprd |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ -. A < B ) -> B e. RR ) | 
						
							| 15 |  | simplr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ -. A < B ) -> A <_ B ) | 
						
							| 16 |  | simpr |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ -. A < B ) -> -. A < B ) | 
						
							| 17 | 13 14 15 16 | lenlteq |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ -. A < B ) -> A = B ) | 
						
							| 18 |  | simplr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> B e. RR ) | 
						
							| 19 |  | simpr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> A = B ) | 
						
							| 20 | 19 | eqcomd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> B = A ) | 
						
							| 21 | 18 20 | eqled |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> B <_ A ) | 
						
							| 22 |  | simpll |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> A e. RR ) | 
						
							| 23 | 18 22 | lenltd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> ( B <_ A <-> -. A < B ) ) | 
						
							| 24 | 21 23 | mpbid |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> -. A < B ) | 
						
							| 25 | 24 | iffalsed |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> if ( A < B , ( B - A ) , 0 ) = 0 ) | 
						
							| 26 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 27 | 26 | subidd |  |-  ( A e. RR -> ( A - A ) = 0 ) | 
						
							| 28 | 27 | eqcomd |  |-  ( A e. RR -> 0 = ( A - A ) ) | 
						
							| 29 | 28 | ad2antrr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> 0 = ( A - A ) ) | 
						
							| 30 |  | oveq1 |  |-  ( A = B -> ( A - A ) = ( B - A ) ) | 
						
							| 31 | 30 | adantl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> ( A - A ) = ( B - A ) ) | 
						
							| 32 | 25 29 31 | 3eqtrd |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) | 
						
							| 33 | 3 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) | 
						
							| 34 | 22 19 | eqled |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> A <_ B ) | 
						
							| 35 | 34 | iftrued |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> if ( A <_ B , ( B - A ) , 0 ) = ( B - A ) ) | 
						
							| 36 | 32 33 35 | 3eqtr4d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> ( vol ` ( A [,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) | 
						
							| 37 | 12 17 36 | syl2anc |  |-  ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ -. A < B ) -> ( vol ` ( A [,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) | 
						
							| 38 | 11 37 | pm2.61dan |  |-  ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( vol ` ( A [,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) | 
						
							| 39 | 8 | stoic1a |  |-  ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> -. A < B ) | 
						
							| 40 | 39 | iffalsed |  |-  ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> if ( A < B , ( B - A ) , 0 ) = 0 ) | 
						
							| 41 | 3 | adantr |  |-  ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) | 
						
							| 42 |  | iffalse |  |-  ( -. A <_ B -> if ( A <_ B , ( B - A ) , 0 ) = 0 ) | 
						
							| 43 | 42 | adantl |  |-  ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> if ( A <_ B , ( B - A ) , 0 ) = 0 ) | 
						
							| 44 | 40 41 43 | 3eqtr4d |  |-  ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> ( vol ` ( A [,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) | 
						
							| 45 | 38 44 | pm2.61dan |  |-  ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) |