| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iftrue |
|- ( A < B -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) |
| 2 |
1
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) |
| 3 |
|
volico |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) |
| 4 |
3
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) |
| 5 |
|
simpll |
|- ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> A e. RR ) |
| 6 |
|
simplr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> B e. RR ) |
| 7 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> A < B ) |
| 8 |
5 6 7
|
ltled |
|- ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> A <_ B ) |
| 9 |
8
|
iftrued |
|- ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> if ( A <_ B , ( B - A ) , 0 ) = ( B - A ) ) |
| 10 |
2 4 9
|
3eqtr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ A < B ) -> ( vol ` ( A [,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) |
| 11 |
10
|
adantlr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ A < B ) -> ( vol ` ( A [,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) |
| 12 |
|
simpll |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ -. A < B ) -> ( A e. RR /\ B e. RR ) ) |
| 13 |
12
|
simpld |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ -. A < B ) -> A e. RR ) |
| 14 |
12
|
simprd |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ -. A < B ) -> B e. RR ) |
| 15 |
|
simplr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ -. A < B ) -> A <_ B ) |
| 16 |
|
simpr |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ -. A < B ) -> -. A < B ) |
| 17 |
13 14 15 16
|
lenlteq |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ -. A < B ) -> A = B ) |
| 18 |
|
simplr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> B e. RR ) |
| 19 |
|
simpr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> A = B ) |
| 20 |
19
|
eqcomd |
|- ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> B = A ) |
| 21 |
18 20
|
eqled |
|- ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> B <_ A ) |
| 22 |
|
simpll |
|- ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> A e. RR ) |
| 23 |
18 22
|
lenltd |
|- ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> ( B <_ A <-> -. A < B ) ) |
| 24 |
21 23
|
mpbid |
|- ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> -. A < B ) |
| 25 |
24
|
iffalsed |
|- ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> if ( A < B , ( B - A ) , 0 ) = 0 ) |
| 26 |
|
recn |
|- ( A e. RR -> A e. CC ) |
| 27 |
26
|
subidd |
|- ( A e. RR -> ( A - A ) = 0 ) |
| 28 |
27
|
eqcomd |
|- ( A e. RR -> 0 = ( A - A ) ) |
| 29 |
28
|
ad2antrr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> 0 = ( A - A ) ) |
| 30 |
|
oveq1 |
|- ( A = B -> ( A - A ) = ( B - A ) ) |
| 31 |
30
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> ( A - A ) = ( B - A ) ) |
| 32 |
25 29 31
|
3eqtrd |
|- ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> if ( A < B , ( B - A ) , 0 ) = ( B - A ) ) |
| 33 |
3
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) |
| 34 |
22 19
|
eqled |
|- ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> A <_ B ) |
| 35 |
34
|
iftrued |
|- ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> if ( A <_ B , ( B - A ) , 0 ) = ( B - A ) ) |
| 36 |
32 33 35
|
3eqtr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ A = B ) -> ( vol ` ( A [,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) |
| 37 |
12 17 36
|
syl2anc |
|- ( ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) /\ -. A < B ) -> ( vol ` ( A [,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) |
| 38 |
11 37
|
pm2.61dan |
|- ( ( ( A e. RR /\ B e. RR ) /\ A <_ B ) -> ( vol ` ( A [,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) |
| 39 |
8
|
stoic1a |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> -. A < B ) |
| 40 |
39
|
iffalsed |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> if ( A < B , ( B - A ) , 0 ) = 0 ) |
| 41 |
3
|
adantr |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> ( vol ` ( A [,) B ) ) = if ( A < B , ( B - A ) , 0 ) ) |
| 42 |
|
iffalse |
|- ( -. A <_ B -> if ( A <_ B , ( B - A ) , 0 ) = 0 ) |
| 43 |
42
|
adantl |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> if ( A <_ B , ( B - A ) , 0 ) = 0 ) |
| 44 |
40 41 43
|
3eqtr4d |
|- ( ( ( A e. RR /\ B e. RR ) /\ -. A <_ B ) -> ( vol ` ( A [,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) |
| 45 |
38 44
|
pm2.61dan |
|- ( ( A e. RR /\ B e. RR ) -> ( vol ` ( A [,) B ) ) = if ( A <_ B , ( B - A ) , 0 ) ) |