Description: n-dimensional Lebesgue measurable sets are subsets of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vonmblss2.x | |- ( ph -> X e. Fin ) |
|
| vonmblss2.y | |- ( ph -> Y e. dom ( voln ` X ) ) |
||
| Assertion | vonmblss2 | |- ( ph -> Y C_ ( RR ^m X ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | vonmblss2.x | |- ( ph -> X e. Fin ) |
|
| 2 | vonmblss2.y | |- ( ph -> Y e. dom ( voln ` X ) ) |
|
| 3 | 1 | vonmblss | |- ( ph -> dom ( voln ` X ) C_ ~P ( RR ^m X ) ) |
| 4 | 3 2 | sseldd | |- ( ph -> Y e. ~P ( RR ^m X ) ) |
| 5 | elpwi | |- ( Y e. ~P ( RR ^m X ) -> Y C_ ( RR ^m X ) ) |
|
| 6 | 4 5 | syl | |- ( ph -> Y C_ ( RR ^m X ) ) |