Metamath Proof Explorer


Theorem vonmblss2

Description: n-dimensional Lebesgue measurable sets are subsets of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses vonmblss2.x
|- ( ph -> X e. Fin )
vonmblss2.y
|- ( ph -> Y e. dom ( voln ` X ) )
Assertion vonmblss2
|- ( ph -> Y C_ ( RR ^m X ) )

Proof

Step Hyp Ref Expression
1 vonmblss2.x
 |-  ( ph -> X e. Fin )
2 vonmblss2.y
 |-  ( ph -> Y e. dom ( voln ` X ) )
3 1 vonmblss
 |-  ( ph -> dom ( voln ` X ) C_ ~P ( RR ^m X ) )
4 3 2 sseldd
 |-  ( ph -> Y e. ~P ( RR ^m X ) )
5 elpwi
 |-  ( Y e. ~P ( RR ^m X ) -> Y C_ ( RR ^m X ) )
6 4 5 syl
 |-  ( ph -> Y C_ ( RR ^m X ) )