| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovolval2lem.1 |  |-  ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) | 
						
							| 2 |  | reex |  |-  RR e. _V | 
						
							| 3 | 2 2 | xpex |  |-  ( RR X. RR ) e. _V | 
						
							| 4 |  | inss2 |  |-  ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) | 
						
							| 5 |  | mapss |  |-  ( ( ( RR X. RR ) e. _V /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) ) -> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) C_ ( ( RR X. RR ) ^m NN ) ) | 
						
							| 6 | 3 4 5 | mp2an |  |-  ( ( <_ i^i ( RR X. RR ) ) ^m NN ) C_ ( ( RR X. RR ) ^m NN ) | 
						
							| 7 | 3 | inex2 |  |-  ( <_ i^i ( RR X. RR ) ) e. _V | 
						
							| 8 | 7 | a1i |  |-  ( ph -> ( <_ i^i ( RR X. RR ) ) e. _V ) | 
						
							| 9 |  | nnex |  |-  NN e. _V | 
						
							| 10 | 9 | a1i |  |-  ( ph -> NN e. _V ) | 
						
							| 11 | 8 10 | elmapd |  |-  ( ph -> ( F e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> F : NN --> ( <_ i^i ( RR X. RR ) ) ) ) | 
						
							| 12 | 1 11 | mpbird |  |-  ( ph -> F e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) | 
						
							| 13 | 6 12 | sselid |  |-  ( ph -> F e. ( ( RR X. RR ) ^m NN ) ) | 
						
							| 14 |  | 1zzd |  |-  ( F e. ( ( RR X. RR ) ^m NN ) -> 1 e. ZZ ) | 
						
							| 15 |  | nnuz |  |-  NN = ( ZZ>= ` 1 ) | 
						
							| 16 |  | elmapi |  |-  ( F e. ( ( RR X. RR ) ^m NN ) -> F : NN --> ( RR X. RR ) ) | 
						
							| 17 | 16 | adantr |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> F : NN --> ( RR X. RR ) ) | 
						
							| 18 |  | simpr |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> k e. NN ) | 
						
							| 19 | 17 18 | fvovco |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( ( [,) o. F ) ` k ) = ( ( 1st ` ( F ` k ) ) [,) ( 2nd ` ( F ` k ) ) ) ) | 
						
							| 20 | 19 | fveq2d |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( vol ` ( ( [,) o. F ) ` k ) ) = ( vol ` ( ( 1st ` ( F ` k ) ) [,) ( 2nd ` ( F ` k ) ) ) ) ) | 
						
							| 21 | 16 | ffvelcdmda |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( F ` k ) e. ( RR X. RR ) ) | 
						
							| 22 |  | xp1st |  |-  ( ( F ` k ) e. ( RR X. RR ) -> ( 1st ` ( F ` k ) ) e. RR ) | 
						
							| 23 | 21 22 | syl |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( 1st ` ( F ` k ) ) e. RR ) | 
						
							| 24 |  | xp2nd |  |-  ( ( F ` k ) e. ( RR X. RR ) -> ( 2nd ` ( F ` k ) ) e. RR ) | 
						
							| 25 | 21 24 | syl |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( 2nd ` ( F ` k ) ) e. RR ) | 
						
							| 26 |  | volicore |  |-  ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR ) -> ( vol ` ( ( 1st ` ( F ` k ) ) [,) ( 2nd ` ( F ` k ) ) ) ) e. RR ) | 
						
							| 27 | 23 25 26 | syl2anc |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( vol ` ( ( 1st ` ( F ` k ) ) [,) ( 2nd ` ( F ` k ) ) ) ) e. RR ) | 
						
							| 28 | 20 27 | eqeltrd |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( vol ` ( ( [,) o. F ) ` k ) ) e. RR ) | 
						
							| 29 | 28 | recnd |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( vol ` ( ( [,) o. F ) ` k ) ) e. CC ) | 
						
							| 30 |  | eqid |  |-  ( n e. NN |-> sum_ k e. ( 1 ... n ) ( vol ` ( ( [,) o. F ) ` k ) ) ) = ( n e. NN |-> sum_ k e. ( 1 ... n ) ( vol ` ( ( [,) o. F ) ` k ) ) ) | 
						
							| 31 |  | eqid |  |-  seq 1 ( + , ( k e. NN |-> ( vol ` ( ( [,) o. F ) ` k ) ) ) ) = seq 1 ( + , ( k e. NN |-> ( vol ` ( ( [,) o. F ) ` k ) ) ) ) | 
						
							| 32 | 14 15 29 30 31 | fsumsermpt |  |-  ( F e. ( ( RR X. RR ) ^m NN ) -> ( n e. NN |-> sum_ k e. ( 1 ... n ) ( vol ` ( ( [,) o. F ) ` k ) ) ) = seq 1 ( + , ( k e. NN |-> ( vol ` ( ( [,) o. F ) ` k ) ) ) ) ) | 
						
							| 33 | 13 32 | syl |  |-  ( ph -> ( n e. NN |-> sum_ k e. ( 1 ... n ) ( vol ` ( ( [,) o. F ) ` k ) ) ) = seq 1 ( + , ( k e. NN |-> ( vol ` ( ( [,) o. F ) ` k ) ) ) ) ) | 
						
							| 34 |  | simpr |  |-  ( ( ( ph /\ k e. NN ) /\ ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) | 
						
							| 35 | 34 | iftrued |  |-  ( ( ( ph /\ k e. NN ) /\ ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> if ( ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) , ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) , 0 ) = ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) ) | 
						
							| 36 | 13 23 | sylan |  |-  ( ( ph /\ k e. NN ) -> ( 1st ` ( F ` k ) ) e. RR ) | 
						
							| 37 | 36 | adantr |  |-  ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> ( 1st ` ( F ` k ) ) e. RR ) | 
						
							| 38 | 13 25 | sylan |  |-  ( ( ph /\ k e. NN ) -> ( 2nd ` ( F ` k ) ) e. RR ) | 
						
							| 39 | 38 | adantr |  |-  ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> ( 2nd ` ( F ` k ) ) e. RR ) | 
						
							| 40 |  | ressxr |  |-  RR C_ RR* | 
						
							| 41 | 40 37 | sselid |  |-  ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> ( 1st ` ( F ` k ) ) e. RR* ) | 
						
							| 42 | 40 39 | sselid |  |-  ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> ( 2nd ` ( F ` k ) ) e. RR* ) | 
						
							| 43 |  | xpss |  |-  ( RR X. RR ) C_ ( _V X. _V ) | 
						
							| 44 | 43 21 | sselid |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( F ` k ) e. ( _V X. _V ) ) | 
						
							| 45 |  | 1st2ndb |  |-  ( ( F ` k ) e. ( _V X. _V ) <-> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) | 
						
							| 46 | 44 45 | sylib |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) | 
						
							| 47 | 13 46 | sylan |  |-  ( ( ph /\ k e. NN ) -> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) | 
						
							| 48 | 47 | eqcomd |  |-  ( ( ph /\ k e. NN ) -> <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. = ( F ` k ) ) | 
						
							| 49 |  | inss1 |  |-  ( <_ i^i ( RR X. RR ) ) C_ <_ | 
						
							| 50 | 49 | a1i |  |-  ( ph -> ( <_ i^i ( RR X. RR ) ) C_ <_ ) | 
						
							| 51 | 1 50 | fssd |  |-  ( ph -> F : NN --> <_ ) | 
						
							| 52 | 51 | ffvelcdmda |  |-  ( ( ph /\ k e. NN ) -> ( F ` k ) e. <_ ) | 
						
							| 53 | 48 52 | eqeltrd |  |-  ( ( ph /\ k e. NN ) -> <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. e. <_ ) | 
						
							| 54 |  | df-br |  |-  ( ( 1st ` ( F ` k ) ) <_ ( 2nd ` ( F ` k ) ) <-> <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. e. <_ ) | 
						
							| 55 | 53 54 | sylibr |  |-  ( ( ph /\ k e. NN ) -> ( 1st ` ( F ` k ) ) <_ ( 2nd ` ( F ` k ) ) ) | 
						
							| 56 | 55 | adantr |  |-  ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> ( 1st ` ( F ` k ) ) <_ ( 2nd ` ( F ` k ) ) ) | 
						
							| 57 |  | simpr |  |-  ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) | 
						
							| 58 | 39 37 | lenltd |  |-  ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> ( ( 2nd ` ( F ` k ) ) <_ ( 1st ` ( F ` k ) ) <-> -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) ) | 
						
							| 59 | 57 58 | mpbird |  |-  ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> ( 2nd ` ( F ` k ) ) <_ ( 1st ` ( F ` k ) ) ) | 
						
							| 60 | 41 42 56 59 | xrletrid |  |-  ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) | 
						
							| 61 |  | simp3 |  |-  ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) | 
						
							| 62 |  | simp1 |  |-  ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> ( 1st ` ( F ` k ) ) e. RR ) | 
						
							| 63 |  | simp2 |  |-  ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> ( 2nd ` ( F ` k ) ) e. RR ) | 
						
							| 64 | 62 63 | eqleltd |  |-  ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> ( ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) <-> ( ( 1st ` ( F ` k ) ) <_ ( 2nd ` ( F ` k ) ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) ) ) | 
						
							| 65 | 61 64 | mpbid |  |-  ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> ( ( 1st ` ( F ` k ) ) <_ ( 2nd ` ( F ` k ) ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) ) | 
						
							| 66 | 65 | simprd |  |-  ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) | 
						
							| 67 | 66 | iffalsed |  |-  ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> if ( ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) , ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) , 0 ) = 0 ) | 
						
							| 68 | 63 | recnd |  |-  ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> ( 2nd ` ( F ` k ) ) e. CC ) | 
						
							| 69 | 61 | eqcomd |  |-  ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> ( 2nd ` ( F ` k ) ) = ( 1st ` ( F ` k ) ) ) | 
						
							| 70 | 68 69 | subeq0bd |  |-  ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) = 0 ) | 
						
							| 71 | 67 70 | eqtr4d |  |-  ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> if ( ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) , ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) , 0 ) = ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) ) | 
						
							| 72 | 37 39 60 71 | syl3anc |  |-  ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> if ( ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) , ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) , 0 ) = ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) ) | 
						
							| 73 | 35 72 | pm2.61dan |  |-  ( ( ph /\ k e. NN ) -> if ( ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) , ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) , 0 ) = ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) ) | 
						
							| 74 |  | volico |  |-  ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR ) -> ( vol ` ( ( 1st ` ( F ` k ) ) [,) ( 2nd ` ( F ` k ) ) ) ) = if ( ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) , ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) , 0 ) ) | 
						
							| 75 | 36 38 74 | syl2anc |  |-  ( ( ph /\ k e. NN ) -> ( vol ` ( ( 1st ` ( F ` k ) ) [,) ( 2nd ` ( F ` k ) ) ) ) = if ( ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) , ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) , 0 ) ) | 
						
							| 76 | 36 38 55 | abssuble0d |  |-  ( ( ph /\ k e. NN ) -> ( abs ` ( ( 1st ` ( F ` k ) ) - ( 2nd ` ( F ` k ) ) ) ) = ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) ) | 
						
							| 77 | 73 75 76 | 3eqtr4d |  |-  ( ( ph /\ k e. NN ) -> ( vol ` ( ( 1st ` ( F ` k ) ) [,) ( 2nd ` ( F ` k ) ) ) ) = ( abs ` ( ( 1st ` ( F ` k ) ) - ( 2nd ` ( F ` k ) ) ) ) ) | 
						
							| 78 | 13 | adantr |  |-  ( ( ph /\ k e. NN ) -> F e. ( ( RR X. RR ) ^m NN ) ) | 
						
							| 79 |  | simpr |  |-  ( ( ph /\ k e. NN ) -> k e. NN ) | 
						
							| 80 | 78 79 20 | syl2anc |  |-  ( ( ph /\ k e. NN ) -> ( vol ` ( ( [,) o. F ) ` k ) ) = ( vol ` ( ( 1st ` ( F ` k ) ) [,) ( 2nd ` ( F ` k ) ) ) ) ) | 
						
							| 81 | 46 | fveq2d |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( ( abs o. - ) ` ( F ` k ) ) = ( ( abs o. - ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) ) | 
						
							| 82 |  | df-ov |  |-  ( ( 1st ` ( F ` k ) ) ( abs o. - ) ( 2nd ` ( F ` k ) ) ) = ( ( abs o. - ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) | 
						
							| 83 | 82 | eqcomi |  |-  ( ( abs o. - ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) = ( ( 1st ` ( F ` k ) ) ( abs o. - ) ( 2nd ` ( F ` k ) ) ) | 
						
							| 84 | 83 | a1i |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( ( abs o. - ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) = ( ( 1st ` ( F ` k ) ) ( abs o. - ) ( 2nd ` ( F ` k ) ) ) ) | 
						
							| 85 | 23 | recnd |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( 1st ` ( F ` k ) ) e. CC ) | 
						
							| 86 | 25 | recnd |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( 2nd ` ( F ` k ) ) e. CC ) | 
						
							| 87 |  | eqid |  |-  ( abs o. - ) = ( abs o. - ) | 
						
							| 88 | 87 | cnmetdval |  |-  ( ( ( 1st ` ( F ` k ) ) e. CC /\ ( 2nd ` ( F ` k ) ) e. CC ) -> ( ( 1st ` ( F ` k ) ) ( abs o. - ) ( 2nd ` ( F ` k ) ) ) = ( abs ` ( ( 1st ` ( F ` k ) ) - ( 2nd ` ( F ` k ) ) ) ) ) | 
						
							| 89 | 85 86 88 | syl2anc |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( ( 1st ` ( F ` k ) ) ( abs o. - ) ( 2nd ` ( F ` k ) ) ) = ( abs ` ( ( 1st ` ( F ` k ) ) - ( 2nd ` ( F ` k ) ) ) ) ) | 
						
							| 90 | 81 84 89 | 3eqtrd |  |-  ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( ( abs o. - ) ` ( F ` k ) ) = ( abs ` ( ( 1st ` ( F ` k ) ) - ( 2nd ` ( F ` k ) ) ) ) ) | 
						
							| 91 | 78 79 90 | syl2anc |  |-  ( ( ph /\ k e. NN ) -> ( ( abs o. - ) ` ( F ` k ) ) = ( abs ` ( ( 1st ` ( F ` k ) ) - ( 2nd ` ( F ` k ) ) ) ) ) | 
						
							| 92 | 77 80 91 | 3eqtr4d |  |-  ( ( ph /\ k e. NN ) -> ( vol ` ( ( [,) o. F ) ` k ) ) = ( ( abs o. - ) ` ( F ` k ) ) ) | 
						
							| 93 | 92 | mpteq2dva |  |-  ( ph -> ( k e. NN |-> ( vol ` ( ( [,) o. F ) ` k ) ) ) = ( k e. NN |-> ( ( abs o. - ) ` ( F ` k ) ) ) ) | 
						
							| 94 | 13 16 | syl |  |-  ( ph -> F : NN --> ( RR X. RR ) ) | 
						
							| 95 |  | rr2sscn2 |  |-  ( RR X. RR ) C_ ( CC X. CC ) | 
						
							| 96 | 95 | a1i |  |-  ( ph -> ( RR X. RR ) C_ ( CC X. CC ) ) | 
						
							| 97 |  | absf |  |-  abs : CC --> RR | 
						
							| 98 |  | subf |  |-  - : ( CC X. CC ) --> CC | 
						
							| 99 |  | fco |  |-  ( ( abs : CC --> RR /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) | 
						
							| 100 | 97 98 99 | mp2an |  |-  ( abs o. - ) : ( CC X. CC ) --> RR | 
						
							| 101 | 100 | a1i |  |-  ( ph -> ( abs o. - ) : ( CC X. CC ) --> RR ) | 
						
							| 102 | 94 96 101 | fcomptss |  |-  ( ph -> ( ( abs o. - ) o. F ) = ( k e. NN |-> ( ( abs o. - ) ` ( F ` k ) ) ) ) | 
						
							| 103 | 93 102 | eqtr4d |  |-  ( ph -> ( k e. NN |-> ( vol ` ( ( [,) o. F ) ` k ) ) ) = ( ( abs o. - ) o. F ) ) | 
						
							| 104 | 103 | seqeq3d |  |-  ( ph -> seq 1 ( + , ( k e. NN |-> ( vol ` ( ( [,) o. F ) ` k ) ) ) ) = seq 1 ( + , ( ( abs o. - ) o. F ) ) ) | 
						
							| 105 | 33 104 | eqtr2d |  |-  ( ph -> seq 1 ( + , ( ( abs o. - ) o. F ) ) = ( n e. NN |-> sum_ k e. ( 1 ... n ) ( vol ` ( ( [,) o. F ) ` k ) ) ) ) | 
						
							| 106 | 105 | rneqd |  |-  ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. F ) ) = ran ( n e. NN |-> sum_ k e. ( 1 ... n ) ( vol ` ( ( [,) o. F ) ` k ) ) ) ) |