Step |
Hyp |
Ref |
Expression |
1 |
|
ovolval2lem.1 |
|- ( ph -> F : NN --> ( <_ i^i ( RR X. RR ) ) ) |
2 |
|
reex |
|- RR e. _V |
3 |
2 2
|
xpex |
|- ( RR X. RR ) e. _V |
4 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
5 |
|
mapss |
|- ( ( ( RR X. RR ) e. _V /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) ) -> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) C_ ( ( RR X. RR ) ^m NN ) ) |
6 |
3 4 5
|
mp2an |
|- ( ( <_ i^i ( RR X. RR ) ) ^m NN ) C_ ( ( RR X. RR ) ^m NN ) |
7 |
3
|
inex2 |
|- ( <_ i^i ( RR X. RR ) ) e. _V |
8 |
7
|
a1i |
|- ( ph -> ( <_ i^i ( RR X. RR ) ) e. _V ) |
9 |
|
nnex |
|- NN e. _V |
10 |
9
|
a1i |
|- ( ph -> NN e. _V ) |
11 |
8 10
|
elmapd |
|- ( ph -> ( F e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) <-> F : NN --> ( <_ i^i ( RR X. RR ) ) ) ) |
12 |
1 11
|
mpbird |
|- ( ph -> F e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ) |
13 |
6 12
|
sselid |
|- ( ph -> F e. ( ( RR X. RR ) ^m NN ) ) |
14 |
|
1zzd |
|- ( F e. ( ( RR X. RR ) ^m NN ) -> 1 e. ZZ ) |
15 |
|
nnuz |
|- NN = ( ZZ>= ` 1 ) |
16 |
|
elmapi |
|- ( F e. ( ( RR X. RR ) ^m NN ) -> F : NN --> ( RR X. RR ) ) |
17 |
16
|
adantr |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> F : NN --> ( RR X. RR ) ) |
18 |
|
simpr |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> k e. NN ) |
19 |
17 18
|
fvovco |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( ( [,) o. F ) ` k ) = ( ( 1st ` ( F ` k ) ) [,) ( 2nd ` ( F ` k ) ) ) ) |
20 |
19
|
fveq2d |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( vol ` ( ( [,) o. F ) ` k ) ) = ( vol ` ( ( 1st ` ( F ` k ) ) [,) ( 2nd ` ( F ` k ) ) ) ) ) |
21 |
16
|
ffvelrnda |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( F ` k ) e. ( RR X. RR ) ) |
22 |
|
xp1st |
|- ( ( F ` k ) e. ( RR X. RR ) -> ( 1st ` ( F ` k ) ) e. RR ) |
23 |
21 22
|
syl |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( 1st ` ( F ` k ) ) e. RR ) |
24 |
|
xp2nd |
|- ( ( F ` k ) e. ( RR X. RR ) -> ( 2nd ` ( F ` k ) ) e. RR ) |
25 |
21 24
|
syl |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( 2nd ` ( F ` k ) ) e. RR ) |
26 |
|
volicore |
|- ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR ) -> ( vol ` ( ( 1st ` ( F ` k ) ) [,) ( 2nd ` ( F ` k ) ) ) ) e. RR ) |
27 |
23 25 26
|
syl2anc |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( vol ` ( ( 1st ` ( F ` k ) ) [,) ( 2nd ` ( F ` k ) ) ) ) e. RR ) |
28 |
20 27
|
eqeltrd |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( vol ` ( ( [,) o. F ) ` k ) ) e. RR ) |
29 |
28
|
recnd |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( vol ` ( ( [,) o. F ) ` k ) ) e. CC ) |
30 |
|
eqid |
|- ( n e. NN |-> sum_ k e. ( 1 ... n ) ( vol ` ( ( [,) o. F ) ` k ) ) ) = ( n e. NN |-> sum_ k e. ( 1 ... n ) ( vol ` ( ( [,) o. F ) ` k ) ) ) |
31 |
|
eqid |
|- seq 1 ( + , ( k e. NN |-> ( vol ` ( ( [,) o. F ) ` k ) ) ) ) = seq 1 ( + , ( k e. NN |-> ( vol ` ( ( [,) o. F ) ` k ) ) ) ) |
32 |
14 15 29 30 31
|
fsumsermpt |
|- ( F e. ( ( RR X. RR ) ^m NN ) -> ( n e. NN |-> sum_ k e. ( 1 ... n ) ( vol ` ( ( [,) o. F ) ` k ) ) ) = seq 1 ( + , ( k e. NN |-> ( vol ` ( ( [,) o. F ) ` k ) ) ) ) ) |
33 |
13 32
|
syl |
|- ( ph -> ( n e. NN |-> sum_ k e. ( 1 ... n ) ( vol ` ( ( [,) o. F ) ` k ) ) ) = seq 1 ( + , ( k e. NN |-> ( vol ` ( ( [,) o. F ) ` k ) ) ) ) ) |
34 |
|
simpr |
|- ( ( ( ph /\ k e. NN ) /\ ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) |
35 |
34
|
iftrued |
|- ( ( ( ph /\ k e. NN ) /\ ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> if ( ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) , ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) , 0 ) = ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) ) |
36 |
13 23
|
sylan |
|- ( ( ph /\ k e. NN ) -> ( 1st ` ( F ` k ) ) e. RR ) |
37 |
36
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> ( 1st ` ( F ` k ) ) e. RR ) |
38 |
13 25
|
sylan |
|- ( ( ph /\ k e. NN ) -> ( 2nd ` ( F ` k ) ) e. RR ) |
39 |
38
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> ( 2nd ` ( F ` k ) ) e. RR ) |
40 |
|
ressxr |
|- RR C_ RR* |
41 |
40 37
|
sselid |
|- ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> ( 1st ` ( F ` k ) ) e. RR* ) |
42 |
40 39
|
sselid |
|- ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> ( 2nd ` ( F ` k ) ) e. RR* ) |
43 |
|
xpss |
|- ( RR X. RR ) C_ ( _V X. _V ) |
44 |
43 21
|
sselid |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( F ` k ) e. ( _V X. _V ) ) |
45 |
|
1st2ndb |
|- ( ( F ` k ) e. ( _V X. _V ) <-> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
46 |
44 45
|
sylib |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
47 |
13 46
|
sylan |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) = <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
48 |
47
|
eqcomd |
|- ( ( ph /\ k e. NN ) -> <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. = ( F ` k ) ) |
49 |
|
inss1 |
|- ( <_ i^i ( RR X. RR ) ) C_ <_ |
50 |
49
|
a1i |
|- ( ph -> ( <_ i^i ( RR X. RR ) ) C_ <_ ) |
51 |
1 50
|
fssd |
|- ( ph -> F : NN --> <_ ) |
52 |
51
|
ffvelrnda |
|- ( ( ph /\ k e. NN ) -> ( F ` k ) e. <_ ) |
53 |
48 52
|
eqeltrd |
|- ( ( ph /\ k e. NN ) -> <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. e. <_ ) |
54 |
|
df-br |
|- ( ( 1st ` ( F ` k ) ) <_ ( 2nd ` ( F ` k ) ) <-> <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. e. <_ ) |
55 |
53 54
|
sylibr |
|- ( ( ph /\ k e. NN ) -> ( 1st ` ( F ` k ) ) <_ ( 2nd ` ( F ` k ) ) ) |
56 |
55
|
adantr |
|- ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> ( 1st ` ( F ` k ) ) <_ ( 2nd ` ( F ` k ) ) ) |
57 |
|
simpr |
|- ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) |
58 |
39 37
|
lenltd |
|- ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> ( ( 2nd ` ( F ` k ) ) <_ ( 1st ` ( F ` k ) ) <-> -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) ) |
59 |
57 58
|
mpbird |
|- ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> ( 2nd ` ( F ` k ) ) <_ ( 1st ` ( F ` k ) ) ) |
60 |
41 42 56 59
|
xrletrid |
|- ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) |
61 |
|
simp3 |
|- ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) |
62 |
|
simp1 |
|- ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> ( 1st ` ( F ` k ) ) e. RR ) |
63 |
|
simp2 |
|- ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> ( 2nd ` ( F ` k ) ) e. RR ) |
64 |
62 63
|
eqleltd |
|- ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> ( ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) <-> ( ( 1st ` ( F ` k ) ) <_ ( 2nd ` ( F ` k ) ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) ) ) |
65 |
61 64
|
mpbid |
|- ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> ( ( 1st ` ( F ` k ) ) <_ ( 2nd ` ( F ` k ) ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) ) |
66 |
65
|
simprd |
|- ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) |
67 |
66
|
iffalsed |
|- ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> if ( ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) , ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) , 0 ) = 0 ) |
68 |
63
|
recnd |
|- ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> ( 2nd ` ( F ` k ) ) e. CC ) |
69 |
61
|
eqcomd |
|- ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> ( 2nd ` ( F ` k ) ) = ( 1st ` ( F ` k ) ) ) |
70 |
68 69
|
subeq0bd |
|- ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) = 0 ) |
71 |
67 70
|
eqtr4d |
|- ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR /\ ( 1st ` ( F ` k ) ) = ( 2nd ` ( F ` k ) ) ) -> if ( ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) , ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) , 0 ) = ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) ) |
72 |
37 39 60 71
|
syl3anc |
|- ( ( ( ph /\ k e. NN ) /\ -. ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) ) -> if ( ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) , ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) , 0 ) = ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) ) |
73 |
35 72
|
pm2.61dan |
|- ( ( ph /\ k e. NN ) -> if ( ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) , ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) , 0 ) = ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) ) |
74 |
|
volico |
|- ( ( ( 1st ` ( F ` k ) ) e. RR /\ ( 2nd ` ( F ` k ) ) e. RR ) -> ( vol ` ( ( 1st ` ( F ` k ) ) [,) ( 2nd ` ( F ` k ) ) ) ) = if ( ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) , ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) , 0 ) ) |
75 |
36 38 74
|
syl2anc |
|- ( ( ph /\ k e. NN ) -> ( vol ` ( ( 1st ` ( F ` k ) ) [,) ( 2nd ` ( F ` k ) ) ) ) = if ( ( 1st ` ( F ` k ) ) < ( 2nd ` ( F ` k ) ) , ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) , 0 ) ) |
76 |
36 38 55
|
abssuble0d |
|- ( ( ph /\ k e. NN ) -> ( abs ` ( ( 1st ` ( F ` k ) ) - ( 2nd ` ( F ` k ) ) ) ) = ( ( 2nd ` ( F ` k ) ) - ( 1st ` ( F ` k ) ) ) ) |
77 |
73 75 76
|
3eqtr4d |
|- ( ( ph /\ k e. NN ) -> ( vol ` ( ( 1st ` ( F ` k ) ) [,) ( 2nd ` ( F ` k ) ) ) ) = ( abs ` ( ( 1st ` ( F ` k ) ) - ( 2nd ` ( F ` k ) ) ) ) ) |
78 |
13
|
adantr |
|- ( ( ph /\ k e. NN ) -> F e. ( ( RR X. RR ) ^m NN ) ) |
79 |
|
simpr |
|- ( ( ph /\ k e. NN ) -> k e. NN ) |
80 |
78 79 20
|
syl2anc |
|- ( ( ph /\ k e. NN ) -> ( vol ` ( ( [,) o. F ) ` k ) ) = ( vol ` ( ( 1st ` ( F ` k ) ) [,) ( 2nd ` ( F ` k ) ) ) ) ) |
81 |
46
|
fveq2d |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( ( abs o. - ) ` ( F ` k ) ) = ( ( abs o. - ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) ) |
82 |
|
df-ov |
|- ( ( 1st ` ( F ` k ) ) ( abs o. - ) ( 2nd ` ( F ` k ) ) ) = ( ( abs o. - ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) |
83 |
82
|
eqcomi |
|- ( ( abs o. - ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) = ( ( 1st ` ( F ` k ) ) ( abs o. - ) ( 2nd ` ( F ` k ) ) ) |
84 |
83
|
a1i |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( ( abs o. - ) ` <. ( 1st ` ( F ` k ) ) , ( 2nd ` ( F ` k ) ) >. ) = ( ( 1st ` ( F ` k ) ) ( abs o. - ) ( 2nd ` ( F ` k ) ) ) ) |
85 |
23
|
recnd |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( 1st ` ( F ` k ) ) e. CC ) |
86 |
25
|
recnd |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( 2nd ` ( F ` k ) ) e. CC ) |
87 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
88 |
87
|
cnmetdval |
|- ( ( ( 1st ` ( F ` k ) ) e. CC /\ ( 2nd ` ( F ` k ) ) e. CC ) -> ( ( 1st ` ( F ` k ) ) ( abs o. - ) ( 2nd ` ( F ` k ) ) ) = ( abs ` ( ( 1st ` ( F ` k ) ) - ( 2nd ` ( F ` k ) ) ) ) ) |
89 |
85 86 88
|
syl2anc |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( ( 1st ` ( F ` k ) ) ( abs o. - ) ( 2nd ` ( F ` k ) ) ) = ( abs ` ( ( 1st ` ( F ` k ) ) - ( 2nd ` ( F ` k ) ) ) ) ) |
90 |
81 84 89
|
3eqtrd |
|- ( ( F e. ( ( RR X. RR ) ^m NN ) /\ k e. NN ) -> ( ( abs o. - ) ` ( F ` k ) ) = ( abs ` ( ( 1st ` ( F ` k ) ) - ( 2nd ` ( F ` k ) ) ) ) ) |
91 |
78 79 90
|
syl2anc |
|- ( ( ph /\ k e. NN ) -> ( ( abs o. - ) ` ( F ` k ) ) = ( abs ` ( ( 1st ` ( F ` k ) ) - ( 2nd ` ( F ` k ) ) ) ) ) |
92 |
77 80 91
|
3eqtr4d |
|- ( ( ph /\ k e. NN ) -> ( vol ` ( ( [,) o. F ) ` k ) ) = ( ( abs o. - ) ` ( F ` k ) ) ) |
93 |
92
|
mpteq2dva |
|- ( ph -> ( k e. NN |-> ( vol ` ( ( [,) o. F ) ` k ) ) ) = ( k e. NN |-> ( ( abs o. - ) ` ( F ` k ) ) ) ) |
94 |
13 16
|
syl |
|- ( ph -> F : NN --> ( RR X. RR ) ) |
95 |
|
rr2sscn2 |
|- ( RR X. RR ) C_ ( CC X. CC ) |
96 |
95
|
a1i |
|- ( ph -> ( RR X. RR ) C_ ( CC X. CC ) ) |
97 |
|
absf |
|- abs : CC --> RR |
98 |
|
subf |
|- - : ( CC X. CC ) --> CC |
99 |
|
fco |
|- ( ( abs : CC --> RR /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
100 |
97 98 99
|
mp2an |
|- ( abs o. - ) : ( CC X. CC ) --> RR |
101 |
100
|
a1i |
|- ( ph -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
102 |
94 96 101
|
fcomptss |
|- ( ph -> ( ( abs o. - ) o. F ) = ( k e. NN |-> ( ( abs o. - ) ` ( F ` k ) ) ) ) |
103 |
93 102
|
eqtr4d |
|- ( ph -> ( k e. NN |-> ( vol ` ( ( [,) o. F ) ` k ) ) ) = ( ( abs o. - ) o. F ) ) |
104 |
103
|
seqeq3d |
|- ( ph -> seq 1 ( + , ( k e. NN |-> ( vol ` ( ( [,) o. F ) ` k ) ) ) ) = seq 1 ( + , ( ( abs o. - ) o. F ) ) ) |
105 |
33 104
|
eqtr2d |
|- ( ph -> seq 1 ( + , ( ( abs o. - ) o. F ) ) = ( n e. NN |-> sum_ k e. ( 1 ... n ) ( vol ` ( ( [,) o. F ) ` k ) ) ) ) |
106 |
105
|
rneqd |
|- ( ph -> ran seq 1 ( + , ( ( abs o. - ) o. F ) ) = ran ( n e. NN |-> sum_ k e. ( 1 ... n ) ( vol ` ( ( [,) o. F ) ` k ) ) ) ) |