Step |
Hyp |
Ref |
Expression |
1 |
|
ovolval2lem.1 |
|
2 |
|
reex |
|
3 |
2 2
|
xpex |
|
4 |
|
inss2 |
|
5 |
|
mapss |
|
6 |
3 4 5
|
mp2an |
|
7 |
3
|
inex2 |
|
8 |
7
|
a1i |
|
9 |
|
nnex |
|
10 |
9
|
a1i |
|
11 |
8 10
|
elmapd |
|
12 |
1 11
|
mpbird |
|
13 |
6 12
|
sselid |
|
14 |
|
1zzd |
|
15 |
|
nnuz |
|
16 |
|
elmapi |
|
17 |
16
|
adantr |
|
18 |
|
simpr |
|
19 |
17 18
|
fvovco |
|
20 |
19
|
fveq2d |
|
21 |
16
|
ffvelrnda |
|
22 |
|
xp1st |
|
23 |
21 22
|
syl |
|
24 |
|
xp2nd |
|
25 |
21 24
|
syl |
|
26 |
|
volicore |
|
27 |
23 25 26
|
syl2anc |
|
28 |
20 27
|
eqeltrd |
|
29 |
28
|
recnd |
|
30 |
|
eqid |
|
31 |
|
eqid |
|
32 |
14 15 29 30 31
|
fsumsermpt |
|
33 |
13 32
|
syl |
|
34 |
|
simpr |
|
35 |
34
|
iftrued |
|
36 |
13 23
|
sylan |
|
37 |
36
|
adantr |
|
38 |
13 25
|
sylan |
|
39 |
38
|
adantr |
|
40 |
|
ressxr |
|
41 |
40 37
|
sselid |
|
42 |
40 39
|
sselid |
|
43 |
|
xpss |
|
44 |
43 21
|
sselid |
|
45 |
|
1st2ndb |
|
46 |
44 45
|
sylib |
|
47 |
13 46
|
sylan |
|
48 |
47
|
eqcomd |
|
49 |
|
inss1 |
|
50 |
49
|
a1i |
|
51 |
1 50
|
fssd |
|
52 |
51
|
ffvelrnda |
|
53 |
48 52
|
eqeltrd |
|
54 |
|
df-br |
|
55 |
53 54
|
sylibr |
|
56 |
55
|
adantr |
|
57 |
|
simpr |
|
58 |
39 37
|
lenltd |
|
59 |
57 58
|
mpbird |
|
60 |
41 42 56 59
|
xrletrid |
|
61 |
|
simp3 |
|
62 |
|
simp1 |
|
63 |
|
simp2 |
|
64 |
62 63
|
eqleltd |
|
65 |
61 64
|
mpbid |
|
66 |
65
|
simprd |
|
67 |
66
|
iffalsed |
|
68 |
63
|
recnd |
|
69 |
61
|
eqcomd |
|
70 |
68 69
|
subeq0bd |
|
71 |
67 70
|
eqtr4d |
|
72 |
37 39 60 71
|
syl3anc |
|
73 |
35 72
|
pm2.61dan |
|
74 |
|
volico |
|
75 |
36 38 74
|
syl2anc |
|
76 |
36 38 55
|
abssuble0d |
|
77 |
73 75 76
|
3eqtr4d |
|
78 |
13
|
adantr |
|
79 |
|
simpr |
|
80 |
78 79 20
|
syl2anc |
|
81 |
46
|
fveq2d |
|
82 |
|
df-ov |
|
83 |
82
|
eqcomi |
|
84 |
83
|
a1i |
|
85 |
23
|
recnd |
|
86 |
25
|
recnd |
|
87 |
|
eqid |
|
88 |
87
|
cnmetdval |
|
89 |
85 86 88
|
syl2anc |
|
90 |
81 84 89
|
3eqtrd |
|
91 |
78 79 90
|
syl2anc |
|
92 |
77 80 91
|
3eqtr4d |
|
93 |
92
|
mpteq2dva |
|
94 |
13 16
|
syl |
|
95 |
|
rr2sscn2 |
|
96 |
95
|
a1i |
|
97 |
|
absf |
|
98 |
|
subf |
|
99 |
|
fco |
|
100 |
97 98 99
|
mp2an |
|
101 |
100
|
a1i |
|
102 |
94 96 101
|
fcomptss |
|
103 |
93 102
|
eqtr4d |
|
104 |
103
|
seqeq3d |
|
105 |
33 104
|
eqtr2d |
|
106 |
105
|
rneqd |
|