Metamath Proof Explorer


Theorem ovolval2lem

Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using sum^ . (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypothesis ovolval2lem.1 φ F : 2
Assertion ovolval2lem φ ran seq 1 + abs F = ran n k = 1 n vol . F k

Proof

Step Hyp Ref Expression
1 ovolval2lem.1 φ F : 2
2 reex V
3 2 2 xpex 2 V
4 inss2 2 2
5 mapss 2 V 2 2 2 2
6 3 4 5 mp2an 2 2
7 3 inex2 2 V
8 7 a1i φ 2 V
9 nnex V
10 9 a1i φ V
11 8 10 elmapd φ F 2 F : 2
12 1 11 mpbird φ F 2
13 6 12 sselid φ F 2
14 1zzd F 2 1
15 nnuz = 1
16 elmapi F 2 F : 2
17 16 adantr F 2 k F : 2
18 simpr F 2 k k
19 17 18 fvovco F 2 k . F k = 1 st F k 2 nd F k
20 19 fveq2d F 2 k vol . F k = vol 1 st F k 2 nd F k
21 16 ffvelrnda F 2 k F k 2
22 xp1st F k 2 1 st F k
23 21 22 syl F 2 k 1 st F k
24 xp2nd F k 2 2 nd F k
25 21 24 syl F 2 k 2 nd F k
26 volicore 1 st F k 2 nd F k vol 1 st F k 2 nd F k
27 23 25 26 syl2anc F 2 k vol 1 st F k 2 nd F k
28 20 27 eqeltrd F 2 k vol . F k
29 28 recnd F 2 k vol . F k
30 eqid n k = 1 n vol . F k = n k = 1 n vol . F k
31 eqid seq 1 + k vol . F k = seq 1 + k vol . F k
32 14 15 29 30 31 fsumsermpt F 2 n k = 1 n vol . F k = seq 1 + k vol . F k
33 13 32 syl φ n k = 1 n vol . F k = seq 1 + k vol . F k
34 simpr φ k 1 st F k < 2 nd F k 1 st F k < 2 nd F k
35 34 iftrued φ k 1 st F k < 2 nd F k if 1 st F k < 2 nd F k 2 nd F k 1 st F k 0 = 2 nd F k 1 st F k
36 13 23 sylan φ k 1 st F k
37 36 adantr φ k ¬ 1 st F k < 2 nd F k 1 st F k
38 13 25 sylan φ k 2 nd F k
39 38 adantr φ k ¬ 1 st F k < 2 nd F k 2 nd F k
40 ressxr *
41 40 37 sselid φ k ¬ 1 st F k < 2 nd F k 1 st F k *
42 40 39 sselid φ k ¬ 1 st F k < 2 nd F k 2 nd F k *
43 xpss 2 V × V
44 43 21 sselid F 2 k F k V × V
45 1st2ndb F k V × V F k = 1 st F k 2 nd F k
46 44 45 sylib F 2 k F k = 1 st F k 2 nd F k
47 13 46 sylan φ k F k = 1 st F k 2 nd F k
48 47 eqcomd φ k 1 st F k 2 nd F k = F k
49 inss1 2
50 49 a1i φ 2
51 1 50 fssd φ F :
52 51 ffvelrnda φ k F k
53 48 52 eqeltrd φ k 1 st F k 2 nd F k
54 df-br 1 st F k 2 nd F k 1 st F k 2 nd F k
55 53 54 sylibr φ k 1 st F k 2 nd F k
56 55 adantr φ k ¬ 1 st F k < 2 nd F k 1 st F k 2 nd F k
57 simpr φ k ¬ 1 st F k < 2 nd F k ¬ 1 st F k < 2 nd F k
58 39 37 lenltd φ k ¬ 1 st F k < 2 nd F k 2 nd F k 1 st F k ¬ 1 st F k < 2 nd F k
59 57 58 mpbird φ k ¬ 1 st F k < 2 nd F k 2 nd F k 1 st F k
60 41 42 56 59 xrletrid φ k ¬ 1 st F k < 2 nd F k 1 st F k = 2 nd F k
61 simp3 1 st F k 2 nd F k 1 st F k = 2 nd F k 1 st F k = 2 nd F k
62 simp1 1 st F k 2 nd F k 1 st F k = 2 nd F k 1 st F k
63 simp2 1 st F k 2 nd F k 1 st F k = 2 nd F k 2 nd F k
64 62 63 eqleltd 1 st F k 2 nd F k 1 st F k = 2 nd F k 1 st F k = 2 nd F k 1 st F k 2 nd F k ¬ 1 st F k < 2 nd F k
65 61 64 mpbid 1 st F k 2 nd F k 1 st F k = 2 nd F k 1 st F k 2 nd F k ¬ 1 st F k < 2 nd F k
66 65 simprd 1 st F k 2 nd F k 1 st F k = 2 nd F k ¬ 1 st F k < 2 nd F k
67 66 iffalsed 1 st F k 2 nd F k 1 st F k = 2 nd F k if 1 st F k < 2 nd F k 2 nd F k 1 st F k 0 = 0
68 63 recnd 1 st F k 2 nd F k 1 st F k = 2 nd F k 2 nd F k
69 61 eqcomd 1 st F k 2 nd F k 1 st F k = 2 nd F k 2 nd F k = 1 st F k
70 68 69 subeq0bd 1 st F k 2 nd F k 1 st F k = 2 nd F k 2 nd F k 1 st F k = 0
71 67 70 eqtr4d 1 st F k 2 nd F k 1 st F k = 2 nd F k if 1 st F k < 2 nd F k 2 nd F k 1 st F k 0 = 2 nd F k 1 st F k
72 37 39 60 71 syl3anc φ k ¬ 1 st F k < 2 nd F k if 1 st F k < 2 nd F k 2 nd F k 1 st F k 0 = 2 nd F k 1 st F k
73 35 72 pm2.61dan φ k if 1 st F k < 2 nd F k 2 nd F k 1 st F k 0 = 2 nd F k 1 st F k
74 volico 1 st F k 2 nd F k vol 1 st F k 2 nd F k = if 1 st F k < 2 nd F k 2 nd F k 1 st F k 0
75 36 38 74 syl2anc φ k vol 1 st F k 2 nd F k = if 1 st F k < 2 nd F k 2 nd F k 1 st F k 0
76 36 38 55 abssuble0d φ k 1 st F k 2 nd F k = 2 nd F k 1 st F k
77 73 75 76 3eqtr4d φ k vol 1 st F k 2 nd F k = 1 st F k 2 nd F k
78 13 adantr φ k F 2
79 simpr φ k k
80 78 79 20 syl2anc φ k vol . F k = vol 1 st F k 2 nd F k
81 46 fveq2d F 2 k abs F k = abs 1 st F k 2 nd F k
82 df-ov 1 st F k abs 2 nd F k = abs 1 st F k 2 nd F k
83 82 eqcomi abs 1 st F k 2 nd F k = 1 st F k abs 2 nd F k
84 83 a1i F 2 k abs 1 st F k 2 nd F k = 1 st F k abs 2 nd F k
85 23 recnd F 2 k 1 st F k
86 25 recnd F 2 k 2 nd F k
87 eqid abs = abs
88 87 cnmetdval 1 st F k 2 nd F k 1 st F k abs 2 nd F k = 1 st F k 2 nd F k
89 85 86 88 syl2anc F 2 k 1 st F k abs 2 nd F k = 1 st F k 2 nd F k
90 81 84 89 3eqtrd F 2 k abs F k = 1 st F k 2 nd F k
91 78 79 90 syl2anc φ k abs F k = 1 st F k 2 nd F k
92 77 80 91 3eqtr4d φ k vol . F k = abs F k
93 92 mpteq2dva φ k vol . F k = k abs F k
94 13 16 syl φ F : 2
95 rr2sscn2 2 ×
96 95 a1i φ 2 ×
97 absf abs :
98 subf : ×
99 fco abs : : × abs : ×
100 97 98 99 mp2an abs : ×
101 100 a1i φ abs : ×
102 94 96 101 fcomptss φ abs F = k abs F k
103 93 102 eqtr4d φ k vol . F k = abs F
104 103 seqeq3d φ seq 1 + k vol . F k = seq 1 + abs F
105 33 104 eqtr2d φ seq 1 + abs F = n k = 1 n vol . F k
106 105 rneqd φ ran seq 1 + abs F = ran n k = 1 n vol . F k