Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using sum^ . See ovolval for an alternative expression. (Contributed by Glauco Siliprandi, 3-Mar-2021)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ovolval2.a | |
|
ovolval2.m | |
||
Assertion | ovolval2 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovolval2.a | |
|
2 | ovolval2.m | |
|
3 | eqid | |
|
4 | 3 | ovolval | |
5 | 1 4 | syl | |
6 | 3 | a1i | |
7 | reex | |
|
8 | 7 7 | xpex | |
9 | inss2 | |
|
10 | mapss | |
|
11 | 8 9 10 | mp2an | |
12 | 11 | sseli | |
13 | 1zzd | |
|
14 | 12 13 | syl | |
15 | 14 | adantl | |
16 | nnuz | |
|
17 | absfico | |
|
18 | subf | |
|
19 | fco | |
|
20 | 17 18 19 | mp2an | |
21 | 20 | a1i | |
22 | rr2sscn2 | |
|
23 | 22 | a1i | |
24 | elmapi | |
|
25 | 12 24 | syl | |
26 | 21 23 25 | fcoss | |
27 | 26 | adantl | |
28 | eqid | |
|
29 | 15 16 27 28 | sge0seq | |
30 | 29 | eqcomd | |
31 | 30 | eqeq2d | |
32 | 31 | anbi2d | |
33 | 32 | rexbidva | |
34 | 33 | rabbidv | |
35 | 2 | eqcomi | |
36 | 35 | a1i | |
37 | 6 34 36 | 3eqtrd | |
38 | 37 | infeq1d | |
39 | 5 38 | eqtrd | |