Metamath Proof Explorer


Theorem ovolval2

Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using sum^ . See ovolval for an alternative expression. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval2.a φA
ovolval2.m M=y*|f2Aran.fy=sum^absf
Assertion ovolval2 φvol*A=supM*<

Proof

Step Hyp Ref Expression
1 ovolval2.a φA
2 ovolval2.m M=y*|f2Aran.fy=sum^absf
3 eqid y*|f2Aran.fy=supranseq1+absf*<=y*|f2Aran.fy=supranseq1+absf*<
4 3 ovolval Avol*A=supy*|f2Aran.fy=supranseq1+absf*<*<
5 1 4 syl φvol*A=supy*|f2Aran.fy=supranseq1+absf*<*<
6 3 a1i φy*|f2Aran.fy=supranseq1+absf*<=y*|f2Aran.fy=supranseq1+absf*<
7 reex V
8 7 7 xpex 2V
9 inss2 22
10 mapss 2V2222
11 8 9 10 mp2an 22
12 11 sseli f2f2
13 1zzd f21
14 12 13 syl f21
15 14 adantl φf21
16 nnuz =1
17 absfico abs:0+∞
18 subf :×
19 fco abs:0+∞:×abs:×0+∞
20 17 18 19 mp2an abs:×0+∞
21 20 a1i f2abs:×0+∞
22 rr2sscn2 2×
23 22 a1i f22×
24 elmapi f2f:2
25 12 24 syl f2f:2
26 21 23 25 fcoss f2absf:0+∞
27 26 adantl φf2absf:0+∞
28 eqid seq1+absf=seq1+absf
29 15 16 27 28 sge0seq φf2sum^absf=supranseq1+absf*<
30 29 eqcomd φf2supranseq1+absf*<=sum^absf
31 30 eqeq2d φf2y=supranseq1+absf*<y=sum^absf
32 31 anbi2d φf2Aran.fy=supranseq1+absf*<Aran.fy=sum^absf
33 32 rexbidva φf2Aran.fy=supranseq1+absf*<f2Aran.fy=sum^absf
34 33 rabbidv φy*|f2Aran.fy=supranseq1+absf*<=y*|f2Aran.fy=sum^absf
35 2 eqcomi y*|f2Aran.fy=sum^absf=M
36 35 a1i φy*|f2Aran.fy=sum^absf=M
37 6 34 36 3eqtrd φy*|f2Aran.fy=supranseq1+absf*<=M
38 37 infeq1d φsupy*|f2Aran.fy=supranseq1+absf*<*<=supM*<
39 5 38 eqtrd φvol*A=supM*<