Metamath Proof Explorer


Theorem ovolval2

Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using sum^ . See ovolval for an alternative expression. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval2.a φ A
ovolval2.m M = y * | f 2 A ran . f y = sum^ abs f
Assertion ovolval2 φ vol * A = sup M * <

Proof

Step Hyp Ref Expression
1 ovolval2.a φ A
2 ovolval2.m M = y * | f 2 A ran . f y = sum^ abs f
3 eqid y * | f 2 A ran . f y = sup ran seq 1 + abs f * < = y * | f 2 A ran . f y = sup ran seq 1 + abs f * <
4 3 ovolval A vol * A = sup y * | f 2 A ran . f y = sup ran seq 1 + abs f * < * <
5 1 4 syl φ vol * A = sup y * | f 2 A ran . f y = sup ran seq 1 + abs f * < * <
6 3 a1i φ y * | f 2 A ran . f y = sup ran seq 1 + abs f * < = y * | f 2 A ran . f y = sup ran seq 1 + abs f * <
7 reex V
8 7 7 xpex 2 V
9 inss2 2 2
10 mapss 2 V 2 2 2 2
11 8 9 10 mp2an 2 2
12 11 sseli f 2 f 2
13 1zzd f 2 1
14 12 13 syl f 2 1
15 14 adantl φ f 2 1
16 nnuz = 1
17 absfico abs : 0 +∞
18 subf : ×
19 fco abs : 0 +∞ : × abs : × 0 +∞
20 17 18 19 mp2an abs : × 0 +∞
21 20 a1i f 2 abs : × 0 +∞
22 rr2sscn2 2 ×
23 22 a1i f 2 2 ×
24 elmapi f 2 f : 2
25 12 24 syl f 2 f : 2
26 21 23 25 fcoss f 2 abs f : 0 +∞
27 26 adantl φ f 2 abs f : 0 +∞
28 eqid seq 1 + abs f = seq 1 + abs f
29 15 16 27 28 sge0seq φ f 2 sum^ abs f = sup ran seq 1 + abs f * <
30 29 eqcomd φ f 2 sup ran seq 1 + abs f * < = sum^ abs f
31 30 eqeq2d φ f 2 y = sup ran seq 1 + abs f * < y = sum^ abs f
32 31 anbi2d φ f 2 A ran . f y = sup ran seq 1 + abs f * < A ran . f y = sum^ abs f
33 32 rexbidva φ f 2 A ran . f y = sup ran seq 1 + abs f * < f 2 A ran . f y = sum^ abs f
34 33 rabbidv φ y * | f 2 A ran . f y = sup ran seq 1 + abs f * < = y * | f 2 A ran . f y = sum^ abs f
35 2 eqcomi y * | f 2 A ran . f y = sum^ abs f = M
36 35 a1i φ y * | f 2 A ran . f y = sum^ abs f = M
37 6 34 36 3eqtrd φ y * | f 2 A ran . f y = sup ran seq 1 + abs f * < = M
38 37 infeq1d φ sup y * | f 2 A ran . f y = sup ran seq 1 + abs f * < * < = sup M * <
39 5 38 eqtrd φ vol * A = sup M * <