Metamath Proof Explorer


Theorem fcoss

Description: Composition of two mappings. Similar to fco , but with a weaker condition on the domain of F . (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses fcoss.f φF:AB
fcoss.c φCA
fcoss.g φG:DC
Assertion fcoss φFG:DB

Proof

Step Hyp Ref Expression
1 fcoss.f φF:AB
2 fcoss.c φCA
3 fcoss.g φG:DC
4 3 2 fssd φG:DA
5 fco F:ABG:DAFG:DB
6 1 4 5 syl2anc φFG:DB