Step |
Hyp |
Ref |
Expression |
1 |
|
ovolval2.a |
⊢ ( 𝜑 → 𝐴 ⊆ ℝ ) |
2 |
|
ovolval2.m |
⊢ 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) ) } |
3 |
|
eqid |
⊢ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } |
4 |
3
|
ovolval |
⊢ ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) = inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) |
5 |
1 4
|
syl |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) ) |
6 |
3
|
a1i |
⊢ ( 𝜑 → { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } ) |
7 |
|
reex |
⊢ ℝ ∈ V |
8 |
7 7
|
xpex |
⊢ ( ℝ × ℝ ) ∈ V |
9 |
|
inss2 |
⊢ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) |
10 |
|
mapss |
⊢ ( ( ( ℝ × ℝ ) ∈ V ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) ) → ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ⊆ ( ( ℝ × ℝ ) ↑m ℕ ) ) |
11 |
8 9 10
|
mp2an |
⊢ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ⊆ ( ( ℝ × ℝ ) ↑m ℕ ) |
12 |
11
|
sseli |
⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) ) |
13 |
|
1zzd |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → 1 ∈ ℤ ) |
14 |
12 13
|
syl |
⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 1 ∈ ℤ ) |
15 |
14
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → 1 ∈ ℤ ) |
16 |
|
nnuz |
⊢ ℕ = ( ℤ≥ ‘ 1 ) |
17 |
|
absfico |
⊢ abs : ℂ ⟶ ( 0 [,) +∞ ) |
18 |
|
subf |
⊢ − : ( ℂ × ℂ ) ⟶ ℂ |
19 |
|
fco |
⊢ ( ( abs : ℂ ⟶ ( 0 [,) +∞ ) ∧ − : ( ℂ × ℂ ) ⟶ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ( 0 [,) +∞ ) ) |
20 |
17 18 19
|
mp2an |
⊢ ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ( 0 [,) +∞ ) |
21 |
20
|
a1i |
⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ( 0 [,) +∞ ) ) |
22 |
|
rr2sscn2 |
⊢ ( ℝ × ℝ ) ⊆ ( ℂ × ℂ ) |
23 |
22
|
a1i |
⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ( ℝ × ℝ ) ⊆ ( ℂ × ℂ ) ) |
24 |
|
elmapi |
⊢ ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ℝ × ℝ ) ) |
25 |
12 24
|
syl |
⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ℝ × ℝ ) ) |
26 |
21 23 25
|
fcoss |
⊢ ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ( ( abs ∘ − ) ∘ 𝑓 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
27 |
26
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( abs ∘ − ) ∘ 𝑓 ) : ℕ ⟶ ( 0 [,) +∞ ) ) |
28 |
|
eqid |
⊢ seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) |
29 |
15 16 27 28
|
sge0seq |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) |
30 |
29
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) = ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) ) |
31 |
30
|
eqeq2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ↔ 𝑦 = ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) ) ) |
32 |
31
|
anbi2d |
⊢ ( ( 𝜑 ∧ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ↔ ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) ) ) ) |
33 |
32
|
rexbidva |
⊢ ( 𝜑 → ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ↔ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) ) ) ) |
34 |
33
|
rabbidv |
⊢ ( 𝜑 → { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) ) } ) |
35 |
2
|
eqcomi |
⊢ { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) ) } = 𝑀 |
36 |
35
|
a1i |
⊢ ( 𝜑 → { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) ) } = 𝑀 ) |
37 |
6 34 36
|
3eqtrd |
⊢ ( 𝜑 → { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } = 𝑀 ) |
38 |
37
|
infeq1d |
⊢ ( 𝜑 → inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ⊆ ∪ ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) = inf ( 𝑀 , ℝ* , < ) ) |
39 |
5 38
|
eqtrd |
⊢ ( 𝜑 → ( vol* ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) ) |