Metamath Proof Explorer


Theorem ovolval2

Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using sum^ . See ovolval for an alternative expression. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval2.a ( 𝜑𝐴 ⊆ ℝ )
ovolval2.m 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) ) }
Assertion ovolval2 ( 𝜑 → ( vol* ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) )

Proof

Step Hyp Ref Expression
1 ovolval2.a ( 𝜑𝐴 ⊆ ℝ )
2 ovolval2.m 𝑀 = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) ) }
3 eqid { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) }
4 3 ovolval ( 𝐴 ⊆ ℝ → ( vol* ‘ 𝐴 ) = inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) )
5 1 4 syl ( 𝜑 → ( vol* ‘ 𝐴 ) = inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) )
6 3 a1i ( 𝜑 → { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } )
7 reex ℝ ∈ V
8 7 7 xpex ( ℝ × ℝ ) ∈ V
9 inss2 ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ )
10 mapss ( ( ( ℝ × ℝ ) ∈ V ∧ ( ≤ ∩ ( ℝ × ℝ ) ) ⊆ ( ℝ × ℝ ) ) → ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ⊆ ( ( ℝ × ℝ ) ↑m ℕ ) )
11 8 9 10 mp2an ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ⊆ ( ( ℝ × ℝ ) ↑m ℕ )
12 11 sseli ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) )
13 1zzd ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → 1 ∈ ℤ )
14 12 13 syl ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 1 ∈ ℤ )
15 14 adantl ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → 1 ∈ ℤ )
16 nnuz ℕ = ( ℤ ‘ 1 )
17 absfico abs : ℂ ⟶ ( 0 [,) +∞ )
18 subf − : ( ℂ × ℂ ) ⟶ ℂ
19 fco ( ( abs : ℂ ⟶ ( 0 [,) +∞ ) ∧ − : ( ℂ × ℂ ) ⟶ ℂ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ( 0 [,) +∞ ) )
20 17 18 19 mp2an ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ( 0 [,) +∞ )
21 20 a1i ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ( abs ∘ − ) : ( ℂ × ℂ ) ⟶ ( 0 [,) +∞ ) )
22 rr2sscn2 ( ℝ × ℝ ) ⊆ ( ℂ × ℂ )
23 22 a1i ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ( ℝ × ℝ ) ⊆ ( ℂ × ℂ ) )
24 elmapi ( 𝑓 ∈ ( ( ℝ × ℝ ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ℝ × ℝ ) )
25 12 24 syl ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → 𝑓 : ℕ ⟶ ( ℝ × ℝ ) )
26 21 23 25 fcoss ( 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) → ( ( abs ∘ − ) ∘ 𝑓 ) : ℕ ⟶ ( 0 [,) +∞ ) )
27 26 adantl ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( abs ∘ − ) ∘ 𝑓 ) : ℕ ⟶ ( 0 [,) +∞ ) )
28 eqid seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) = seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) )
29 15 16 27 28 sge0seq ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) )
30 29 eqcomd ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) = ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) )
31 30 eqeq2d ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ↔ 𝑦 = ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) ) )
32 31 anbi2d ( ( 𝜑𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ) → ( ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ↔ ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) ) ) )
33 32 rexbidva ( 𝜑 → ( ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) ↔ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) ) ) )
34 33 rabbidv ( 𝜑 → { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } = { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) ) } )
35 2 eqcomi { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) ) } = 𝑀
36 35 a1i ( 𝜑 → { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = ( Σ^ ‘ ( ( abs ∘ − ) ∘ 𝑓 ) ) ) } = 𝑀 )
37 6 34 36 3eqtrd ( 𝜑 → { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } = 𝑀 )
38 37 infeq1d ( 𝜑 → inf ( { 𝑦 ∈ ℝ* ∣ ∃ 𝑓 ∈ ( ( ≤ ∩ ( ℝ × ℝ ) ) ↑m ℕ ) ( 𝐴 ran ( (,) ∘ 𝑓 ) ∧ 𝑦 = sup ( ran seq 1 ( + , ( ( abs ∘ − ) ∘ 𝑓 ) ) , ℝ* , < ) ) } , ℝ* , < ) = inf ( 𝑀 , ℝ* , < ) )
39 5 38 eqtrd ( 𝜑 → ( vol* ‘ 𝐴 ) = inf ( 𝑀 , ℝ* , < ) )