Step |
Hyp |
Ref |
Expression |
1 |
|
ovnsubadd2lem.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
ovnsubadd2lem.a |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) |
3 |
|
ovnsubadd2lem.b |
⊢ ( 𝜑 → 𝐵 ⊆ ( ℝ ↑m 𝑋 ) ) |
4 |
|
ovnsubadd2lem.c |
⊢ 𝐶 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ) |
5 |
|
iftrue |
⊢ ( 𝑛 = 1 → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = 𝐴 ) |
6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 = 1 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = 𝐴 ) |
7 |
|
ovexd |
⊢ ( 𝜑 → ( ℝ ↑m 𝑋 ) ∈ V ) |
8 |
7 2
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
9 |
8 2
|
elpwd |
⊢ ( 𝜑 → 𝐴 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 = 1 ) → 𝐴 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
11 |
6 10
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 = 1 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
12 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑛 = 1 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
13 |
|
simpl |
⊢ ( ( ¬ 𝑛 = 1 ∧ 𝑛 = 2 ) → ¬ 𝑛 = 1 ) |
14 |
13
|
iffalsed |
⊢ ( ( ¬ 𝑛 = 1 ∧ 𝑛 = 2 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = if ( 𝑛 = 2 , 𝐵 , ∅ ) ) |
15 |
|
simpr |
⊢ ( ( ¬ 𝑛 = 1 ∧ 𝑛 = 2 ) → 𝑛 = 2 ) |
16 |
15
|
iftrued |
⊢ ( ( ¬ 𝑛 = 1 ∧ 𝑛 = 2 ) → if ( 𝑛 = 2 , 𝐵 , ∅ ) = 𝐵 ) |
17 |
14 16
|
eqtrd |
⊢ ( ( ¬ 𝑛 = 1 ∧ 𝑛 = 2 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = 𝐵 ) |
18 |
17
|
adantll |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑛 = 1 ) ∧ 𝑛 = 2 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = 𝐵 ) |
19 |
7 3
|
ssexd |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
20 |
19 3
|
elpwd |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
21 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑛 = 1 ) ∧ 𝑛 = 2 ) → 𝐵 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
22 |
18 21
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑛 = 1 ) ∧ 𝑛 = 2 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
23 |
22
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑛 = 1 ) ∧ 𝑛 = 2 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
24 |
|
simpl |
⊢ ( ( ¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2 ) → ¬ 𝑛 = 1 ) |
25 |
24
|
iffalsed |
⊢ ( ( ¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = if ( 𝑛 = 2 , 𝐵 , ∅ ) ) |
26 |
|
simpr |
⊢ ( ( ¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2 ) → ¬ 𝑛 = 2 ) |
27 |
26
|
iffalsed |
⊢ ( ( ¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2 ) → if ( 𝑛 = 2 , 𝐵 , ∅ ) = ∅ ) |
28 |
25 27
|
eqtrd |
⊢ ( ( ¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = ∅ ) |
29 |
|
0elpw |
⊢ ∅ ∈ 𝒫 ( ℝ ↑m 𝑋 ) |
30 |
29
|
a1i |
⊢ ( ( ¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2 ) → ∅ ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
31 |
28 30
|
eqeltrd |
⊢ ( ( ¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
32 |
31
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑛 = 1 ) ∧ ¬ 𝑛 = 2 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
33 |
23 32
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑛 = 1 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
34 |
12 33
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
35 |
34 4
|
fmptd |
⊢ ( 𝜑 → 𝐶 : ℕ ⟶ 𝒫 ( ℝ ↑m 𝑋 ) ) |
36 |
1 35
|
ovnsubadd |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ∪ 𝑛 ∈ ℕ ( 𝐶 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) ) ) ) |
37 |
|
eldifi |
⊢ ( 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) → 𝑛 ∈ ℕ ) |
38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ) → 𝑛 ∈ ℕ ) |
39 |
|
eldifn |
⊢ ( 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) → ¬ 𝑛 ∈ { 1 , 2 } ) |
40 |
|
vex |
⊢ 𝑛 ∈ V |
41 |
40
|
a1i |
⊢ ( ¬ 𝑛 ∈ { 1 , 2 } → 𝑛 ∈ V ) |
42 |
|
id |
⊢ ( ¬ 𝑛 ∈ { 1 , 2 } → ¬ 𝑛 ∈ { 1 , 2 } ) |
43 |
41 42
|
nelpr1 |
⊢ ( ¬ 𝑛 ∈ { 1 , 2 } → 𝑛 ≠ 1 ) |
44 |
43
|
neneqd |
⊢ ( ¬ 𝑛 ∈ { 1 , 2 } → ¬ 𝑛 = 1 ) |
45 |
39 44
|
syl |
⊢ ( 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) → ¬ 𝑛 = 1 ) |
46 |
41 42
|
nelpr2 |
⊢ ( ¬ 𝑛 ∈ { 1 , 2 } → 𝑛 ≠ 2 ) |
47 |
46
|
neneqd |
⊢ ( ¬ 𝑛 ∈ { 1 , 2 } → ¬ 𝑛 = 2 ) |
48 |
39 47
|
syl |
⊢ ( 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) → ¬ 𝑛 = 2 ) |
49 |
45 48 28
|
syl2anc |
⊢ ( 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = ∅ ) |
50 |
|
0ex |
⊢ ∅ ∈ V |
51 |
50
|
a1i |
⊢ ( 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) → ∅ ∈ V ) |
52 |
49 51
|
eqeltrd |
⊢ ( 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ V ) |
53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ V ) |
54 |
4
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ V ) → ( 𝐶 ‘ 𝑛 ) = if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ) |
55 |
38 53 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ) → ( 𝐶 ‘ 𝑛 ) = if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ) |
56 |
49
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = ∅ ) |
57 |
55 56
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ) → ( 𝐶 ‘ 𝑛 ) = ∅ ) |
58 |
57
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ( 𝐶 ‘ 𝑛 ) = ∅ ) |
59 |
|
nfcv |
⊢ Ⅎ 𝑛 ( ℕ ∖ { 1 , 2 } ) |
60 |
59
|
iunxdif3 |
⊢ ( ∀ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ( 𝐶 ‘ 𝑛 ) = ∅ → ∪ 𝑛 ∈ ( ℕ ∖ ( ℕ ∖ { 1 , 2 } ) ) ( 𝐶 ‘ 𝑛 ) = ∪ 𝑛 ∈ ℕ ( 𝐶 ‘ 𝑛 ) ) |
61 |
58 60
|
syl |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( ℕ ∖ ( ℕ ∖ { 1 , 2 } ) ) ( 𝐶 ‘ 𝑛 ) = ∪ 𝑛 ∈ ℕ ( 𝐶 ‘ 𝑛 ) ) |
62 |
61
|
eqcomd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ( 𝐶 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( ℕ ∖ ( ℕ ∖ { 1 , 2 } ) ) ( 𝐶 ‘ 𝑛 ) ) |
63 |
|
1nn |
⊢ 1 ∈ ℕ |
64 |
|
2nn |
⊢ 2 ∈ ℕ |
65 |
63 64
|
pm3.2i |
⊢ ( 1 ∈ ℕ ∧ 2 ∈ ℕ ) |
66 |
|
prssi |
⊢ ( ( 1 ∈ ℕ ∧ 2 ∈ ℕ ) → { 1 , 2 } ⊆ ℕ ) |
67 |
65 66
|
ax-mp |
⊢ { 1 , 2 } ⊆ ℕ |
68 |
|
dfss4 |
⊢ ( { 1 , 2 } ⊆ ℕ ↔ ( ℕ ∖ ( ℕ ∖ { 1 , 2 } ) ) = { 1 , 2 } ) |
69 |
67 68
|
mpbi |
⊢ ( ℕ ∖ ( ℕ ∖ { 1 , 2 } ) ) = { 1 , 2 } |
70 |
|
iuneq1 |
⊢ ( ( ℕ ∖ ( ℕ ∖ { 1 , 2 } ) ) = { 1 , 2 } → ∪ 𝑛 ∈ ( ℕ ∖ ( ℕ ∖ { 1 , 2 } ) ) ( 𝐶 ‘ 𝑛 ) = ∪ 𝑛 ∈ { 1 , 2 } ( 𝐶 ‘ 𝑛 ) ) |
71 |
69 70
|
ax-mp |
⊢ ∪ 𝑛 ∈ ( ℕ ∖ ( ℕ ∖ { 1 , 2 } ) ) ( 𝐶 ‘ 𝑛 ) = ∪ 𝑛 ∈ { 1 , 2 } ( 𝐶 ‘ 𝑛 ) |
72 |
71
|
a1i |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( ℕ ∖ ( ℕ ∖ { 1 , 2 } ) ) ( 𝐶 ‘ 𝑛 ) = ∪ 𝑛 ∈ { 1 , 2 } ( 𝐶 ‘ 𝑛 ) ) |
73 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( 𝐶 ‘ 𝑛 ) = ( 𝐶 ‘ 1 ) ) |
74 |
|
fveq2 |
⊢ ( 𝑛 = 2 → ( 𝐶 ‘ 𝑛 ) = ( 𝐶 ‘ 2 ) ) |
75 |
73 74
|
iunxprg |
⊢ ( ( 1 ∈ ℕ ∧ 2 ∈ ℕ ) → ∪ 𝑛 ∈ { 1 , 2 } ( 𝐶 ‘ 𝑛 ) = ( ( 𝐶 ‘ 1 ) ∪ ( 𝐶 ‘ 2 ) ) ) |
76 |
63 64 75
|
mp2an |
⊢ ∪ 𝑛 ∈ { 1 , 2 } ( 𝐶 ‘ 𝑛 ) = ( ( 𝐶 ‘ 1 ) ∪ ( 𝐶 ‘ 2 ) ) |
77 |
76
|
a1i |
⊢ ( 𝜑 → ∪ 𝑛 ∈ { 1 , 2 } ( 𝐶 ‘ 𝑛 ) = ( ( 𝐶 ‘ 1 ) ∪ ( 𝐶 ‘ 2 ) ) ) |
78 |
63
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
79 |
4 5 78 8
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐶 ‘ 1 ) = 𝐴 ) |
80 |
|
id |
⊢ ( 𝑛 = 2 → 𝑛 = 2 ) |
81 |
|
1ne2 |
⊢ 1 ≠ 2 |
82 |
81
|
necomi |
⊢ 2 ≠ 1 |
83 |
82
|
a1i |
⊢ ( 𝑛 = 2 → 2 ≠ 1 ) |
84 |
80 83
|
eqnetrd |
⊢ ( 𝑛 = 2 → 𝑛 ≠ 1 ) |
85 |
84
|
neneqd |
⊢ ( 𝑛 = 2 → ¬ 𝑛 = 1 ) |
86 |
85
|
iffalsed |
⊢ ( 𝑛 = 2 → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = if ( 𝑛 = 2 , 𝐵 , ∅ ) ) |
87 |
|
iftrue |
⊢ ( 𝑛 = 2 → if ( 𝑛 = 2 , 𝐵 , ∅ ) = 𝐵 ) |
88 |
86 87
|
eqtrd |
⊢ ( 𝑛 = 2 → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = 𝐵 ) |
89 |
64
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
90 |
4 88 89 19
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐶 ‘ 2 ) = 𝐵 ) |
91 |
79 90
|
uneq12d |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 1 ) ∪ ( 𝐶 ‘ 2 ) ) = ( 𝐴 ∪ 𝐵 ) ) |
92 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) ) |
93 |
77 91 92
|
3eqtrd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ { 1 , 2 } ( 𝐶 ‘ 𝑛 ) = ( 𝐴 ∪ 𝐵 ) ) |
94 |
62 72 93
|
3eqtrd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ( 𝐶 ‘ 𝑛 ) = ( 𝐴 ∪ 𝐵 ) ) |
95 |
94
|
fveq2d |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ∪ 𝑛 ∈ ℕ ( 𝐶 ‘ 𝑛 ) ) = ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
96 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
97 |
|
nnex |
⊢ ℕ ∈ V |
98 |
97
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
99 |
67
|
a1i |
⊢ ( 𝜑 → { 1 , 2 } ⊆ ℕ ) |
100 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 1 , 2 } ) → 𝑋 ∈ Fin ) |
101 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 1 , 2 } ) → 𝜑 ) |
102 |
99
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 1 , 2 } ) → 𝑛 ∈ ℕ ) |
103 |
35
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ 𝑛 ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
104 |
|
elpwi |
⊢ ( ( 𝐶 ‘ 𝑛 ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) → ( 𝐶 ‘ 𝑛 ) ⊆ ( ℝ ↑m 𝑋 ) ) |
105 |
103 104
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ 𝑛 ) ⊆ ( ℝ ↑m 𝑋 ) ) |
106 |
101 102 105
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 1 , 2 } ) → ( 𝐶 ‘ 𝑛 ) ⊆ ( ℝ ↑m 𝑋 ) ) |
107 |
100 106
|
ovncl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 1 , 2 } ) → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
108 |
57
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ) → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) = ( ( voln* ‘ 𝑋 ) ‘ ∅ ) ) |
109 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ) → 𝑋 ∈ Fin ) |
110 |
109
|
ovn0 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ) → ( ( voln* ‘ 𝑋 ) ‘ ∅ ) = 0 ) |
111 |
108 110
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ) → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) = 0 ) |
112 |
96 98 99 107 111
|
sge0ss |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ { 1 , 2 } ↦ ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) ) ) ) |
113 |
112
|
eqcomd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ { 1 , 2 } ↦ ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) ) ) ) |
114 |
79 2
|
eqsstrd |
⊢ ( 𝜑 → ( 𝐶 ‘ 1 ) ⊆ ( ℝ ↑m 𝑋 ) ) |
115 |
1 114
|
ovncl |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 1 ) ) ∈ ( 0 [,] +∞ ) ) |
116 |
90 3
|
eqsstrd |
⊢ ( 𝜑 → ( 𝐶 ‘ 2 ) ⊆ ( ℝ ↑m 𝑋 ) ) |
117 |
1 116
|
ovncl |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 2 ) ) ∈ ( 0 [,] +∞ ) ) |
118 |
|
2fveq3 |
⊢ ( 𝑛 = 1 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) = ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 1 ) ) ) |
119 |
|
2fveq3 |
⊢ ( 𝑛 = 2 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) = ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 2 ) ) ) |
120 |
81
|
a1i |
⊢ ( 𝜑 → 1 ≠ 2 ) |
121 |
78 89 115 117 118 119 120
|
sge0pr |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ { 1 , 2 } ↦ ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) ) ) = ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 1 ) ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 2 ) ) ) ) |
122 |
79
|
fveq2d |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 1 ) ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ) |
123 |
90
|
fveq2d |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 2 ) ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) ) |
124 |
122 123
|
oveq12d |
⊢ ( 𝜑 → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 1 ) ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 2 ) ) ) = ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) ) ) |
125 |
113 121 124
|
3eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) ) ) = ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) ) ) |
126 |
95 125
|
breq12d |
⊢ ( 𝜑 → ( ( ( voln* ‘ 𝑋 ) ‘ ∪ 𝑛 ∈ ℕ ( 𝐶 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) ) ) ↔ ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) ) ) ) |
127 |
36 126
|
mpbid |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) ) ) |