| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovnsubadd2lem.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
|
ovnsubadd2lem.a |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) |
| 3 |
|
ovnsubadd2lem.b |
⊢ ( 𝜑 → 𝐵 ⊆ ( ℝ ↑m 𝑋 ) ) |
| 4 |
|
ovnsubadd2lem.c |
⊢ 𝐶 = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ) |
| 5 |
|
iftrue |
⊢ ( 𝑛 = 1 → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = 𝐴 ) |
| 6 |
5
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 = 1 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = 𝐴 ) |
| 7 |
|
ovexd |
⊢ ( 𝜑 → ( ℝ ↑m 𝑋 ) ∈ V ) |
| 8 |
7 2
|
ssexd |
⊢ ( 𝜑 → 𝐴 ∈ V ) |
| 9 |
8 2
|
elpwd |
⊢ ( 𝜑 → 𝐴 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 = 1 ) → 𝐴 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 11 |
6 10
|
eqeltrd |
⊢ ( ( 𝜑 ∧ 𝑛 = 1 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 12 |
11
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ 𝑛 = 1 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 13 |
|
simpl |
⊢ ( ( ¬ 𝑛 = 1 ∧ 𝑛 = 2 ) → ¬ 𝑛 = 1 ) |
| 14 |
13
|
iffalsed |
⊢ ( ( ¬ 𝑛 = 1 ∧ 𝑛 = 2 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = if ( 𝑛 = 2 , 𝐵 , ∅ ) ) |
| 15 |
|
simpr |
⊢ ( ( ¬ 𝑛 = 1 ∧ 𝑛 = 2 ) → 𝑛 = 2 ) |
| 16 |
15
|
iftrued |
⊢ ( ( ¬ 𝑛 = 1 ∧ 𝑛 = 2 ) → if ( 𝑛 = 2 , 𝐵 , ∅ ) = 𝐵 ) |
| 17 |
14 16
|
eqtrd |
⊢ ( ( ¬ 𝑛 = 1 ∧ 𝑛 = 2 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = 𝐵 ) |
| 18 |
17
|
adantll |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑛 = 1 ) ∧ 𝑛 = 2 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = 𝐵 ) |
| 19 |
7 3
|
ssexd |
⊢ ( 𝜑 → 𝐵 ∈ V ) |
| 20 |
19 3
|
elpwd |
⊢ ( 𝜑 → 𝐵 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 21 |
20
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑛 = 1 ) ∧ 𝑛 = 2 ) → 𝐵 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 22 |
18 21
|
eqeltrd |
⊢ ( ( ( 𝜑 ∧ ¬ 𝑛 = 1 ) ∧ 𝑛 = 2 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 23 |
22
|
adantllr |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑛 = 1 ) ∧ 𝑛 = 2 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 24 |
|
simpl |
⊢ ( ( ¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2 ) → ¬ 𝑛 = 1 ) |
| 25 |
24
|
iffalsed |
⊢ ( ( ¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = if ( 𝑛 = 2 , 𝐵 , ∅ ) ) |
| 26 |
|
simpr |
⊢ ( ( ¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2 ) → ¬ 𝑛 = 2 ) |
| 27 |
26
|
iffalsed |
⊢ ( ( ¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2 ) → if ( 𝑛 = 2 , 𝐵 , ∅ ) = ∅ ) |
| 28 |
25 27
|
eqtrd |
⊢ ( ( ¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = ∅ ) |
| 29 |
|
0elpw |
⊢ ∅ ∈ 𝒫 ( ℝ ↑m 𝑋 ) |
| 30 |
29
|
a1i |
⊢ ( ( ¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2 ) → ∅ ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 31 |
28 30
|
eqeltrd |
⊢ ( ( ¬ 𝑛 = 1 ∧ ¬ 𝑛 = 2 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 32 |
31
|
adantll |
⊢ ( ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑛 = 1 ) ∧ ¬ 𝑛 = 2 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 33 |
23 32
|
pm2.61dan |
⊢ ( ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) ∧ ¬ 𝑛 = 1 ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 34 |
12 33
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 35 |
34 4
|
fmptd |
⊢ ( 𝜑 → 𝐶 : ℕ ⟶ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 36 |
1 35
|
ovnsubadd |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ∪ 𝑛 ∈ ℕ ( 𝐶 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) ) ) ) |
| 37 |
|
eldifi |
⊢ ( 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) → 𝑛 ∈ ℕ ) |
| 38 |
37
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ) → 𝑛 ∈ ℕ ) |
| 39 |
|
eldifn |
⊢ ( 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) → ¬ 𝑛 ∈ { 1 , 2 } ) |
| 40 |
|
vex |
⊢ 𝑛 ∈ V |
| 41 |
40
|
a1i |
⊢ ( ¬ 𝑛 ∈ { 1 , 2 } → 𝑛 ∈ V ) |
| 42 |
|
id |
⊢ ( ¬ 𝑛 ∈ { 1 , 2 } → ¬ 𝑛 ∈ { 1 , 2 } ) |
| 43 |
41 42
|
nelpr1 |
⊢ ( ¬ 𝑛 ∈ { 1 , 2 } → 𝑛 ≠ 1 ) |
| 44 |
43
|
neneqd |
⊢ ( ¬ 𝑛 ∈ { 1 , 2 } → ¬ 𝑛 = 1 ) |
| 45 |
39 44
|
syl |
⊢ ( 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) → ¬ 𝑛 = 1 ) |
| 46 |
41 42
|
nelpr2 |
⊢ ( ¬ 𝑛 ∈ { 1 , 2 } → 𝑛 ≠ 2 ) |
| 47 |
46
|
neneqd |
⊢ ( ¬ 𝑛 ∈ { 1 , 2 } → ¬ 𝑛 = 2 ) |
| 48 |
39 47
|
syl |
⊢ ( 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) → ¬ 𝑛 = 2 ) |
| 49 |
45 48 28
|
syl2anc |
⊢ ( 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = ∅ ) |
| 50 |
|
0ex |
⊢ ∅ ∈ V |
| 51 |
50
|
a1i |
⊢ ( 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) → ∅ ∈ V ) |
| 52 |
49 51
|
eqeltrd |
⊢ ( 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ V ) |
| 53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ V ) |
| 54 |
4
|
fvmpt2 |
⊢ ( ( 𝑛 ∈ ℕ ∧ if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ∈ V ) → ( 𝐶 ‘ 𝑛 ) = if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ) |
| 55 |
38 53 54
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ) → ( 𝐶 ‘ 𝑛 ) = if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ) |
| 56 |
49
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ) → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = ∅ ) |
| 57 |
55 56
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ) → ( 𝐶 ‘ 𝑛 ) = ∅ ) |
| 58 |
57
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ( 𝐶 ‘ 𝑛 ) = ∅ ) |
| 59 |
|
nfcv |
⊢ Ⅎ 𝑛 ( ℕ ∖ { 1 , 2 } ) |
| 60 |
59
|
iunxdif3 |
⊢ ( ∀ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ( 𝐶 ‘ 𝑛 ) = ∅ → ∪ 𝑛 ∈ ( ℕ ∖ ( ℕ ∖ { 1 , 2 } ) ) ( 𝐶 ‘ 𝑛 ) = ∪ 𝑛 ∈ ℕ ( 𝐶 ‘ 𝑛 ) ) |
| 61 |
58 60
|
syl |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( ℕ ∖ ( ℕ ∖ { 1 , 2 } ) ) ( 𝐶 ‘ 𝑛 ) = ∪ 𝑛 ∈ ℕ ( 𝐶 ‘ 𝑛 ) ) |
| 62 |
61
|
eqcomd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ( 𝐶 ‘ 𝑛 ) = ∪ 𝑛 ∈ ( ℕ ∖ ( ℕ ∖ { 1 , 2 } ) ) ( 𝐶 ‘ 𝑛 ) ) |
| 63 |
|
1nn |
⊢ 1 ∈ ℕ |
| 64 |
|
2nn |
⊢ 2 ∈ ℕ |
| 65 |
63 64
|
pm3.2i |
⊢ ( 1 ∈ ℕ ∧ 2 ∈ ℕ ) |
| 66 |
|
prssi |
⊢ ( ( 1 ∈ ℕ ∧ 2 ∈ ℕ ) → { 1 , 2 } ⊆ ℕ ) |
| 67 |
65 66
|
ax-mp |
⊢ { 1 , 2 } ⊆ ℕ |
| 68 |
|
dfss4 |
⊢ ( { 1 , 2 } ⊆ ℕ ↔ ( ℕ ∖ ( ℕ ∖ { 1 , 2 } ) ) = { 1 , 2 } ) |
| 69 |
67 68
|
mpbi |
⊢ ( ℕ ∖ ( ℕ ∖ { 1 , 2 } ) ) = { 1 , 2 } |
| 70 |
|
iuneq1 |
⊢ ( ( ℕ ∖ ( ℕ ∖ { 1 , 2 } ) ) = { 1 , 2 } → ∪ 𝑛 ∈ ( ℕ ∖ ( ℕ ∖ { 1 , 2 } ) ) ( 𝐶 ‘ 𝑛 ) = ∪ 𝑛 ∈ { 1 , 2 } ( 𝐶 ‘ 𝑛 ) ) |
| 71 |
69 70
|
ax-mp |
⊢ ∪ 𝑛 ∈ ( ℕ ∖ ( ℕ ∖ { 1 , 2 } ) ) ( 𝐶 ‘ 𝑛 ) = ∪ 𝑛 ∈ { 1 , 2 } ( 𝐶 ‘ 𝑛 ) |
| 72 |
71
|
a1i |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ( ℕ ∖ ( ℕ ∖ { 1 , 2 } ) ) ( 𝐶 ‘ 𝑛 ) = ∪ 𝑛 ∈ { 1 , 2 } ( 𝐶 ‘ 𝑛 ) ) |
| 73 |
|
fveq2 |
⊢ ( 𝑛 = 1 → ( 𝐶 ‘ 𝑛 ) = ( 𝐶 ‘ 1 ) ) |
| 74 |
|
fveq2 |
⊢ ( 𝑛 = 2 → ( 𝐶 ‘ 𝑛 ) = ( 𝐶 ‘ 2 ) ) |
| 75 |
73 74
|
iunxprg |
⊢ ( ( 1 ∈ ℕ ∧ 2 ∈ ℕ ) → ∪ 𝑛 ∈ { 1 , 2 } ( 𝐶 ‘ 𝑛 ) = ( ( 𝐶 ‘ 1 ) ∪ ( 𝐶 ‘ 2 ) ) ) |
| 76 |
63 64 75
|
mp2an |
⊢ ∪ 𝑛 ∈ { 1 , 2 } ( 𝐶 ‘ 𝑛 ) = ( ( 𝐶 ‘ 1 ) ∪ ( 𝐶 ‘ 2 ) ) |
| 77 |
76
|
a1i |
⊢ ( 𝜑 → ∪ 𝑛 ∈ { 1 , 2 } ( 𝐶 ‘ 𝑛 ) = ( ( 𝐶 ‘ 1 ) ∪ ( 𝐶 ‘ 2 ) ) ) |
| 78 |
63
|
a1i |
⊢ ( 𝜑 → 1 ∈ ℕ ) |
| 79 |
4 5 78 8
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐶 ‘ 1 ) = 𝐴 ) |
| 80 |
|
id |
⊢ ( 𝑛 = 2 → 𝑛 = 2 ) |
| 81 |
|
1ne2 |
⊢ 1 ≠ 2 |
| 82 |
81
|
necomi |
⊢ 2 ≠ 1 |
| 83 |
82
|
a1i |
⊢ ( 𝑛 = 2 → 2 ≠ 1 ) |
| 84 |
80 83
|
eqnetrd |
⊢ ( 𝑛 = 2 → 𝑛 ≠ 1 ) |
| 85 |
84
|
neneqd |
⊢ ( 𝑛 = 2 → ¬ 𝑛 = 1 ) |
| 86 |
85
|
iffalsed |
⊢ ( 𝑛 = 2 → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = if ( 𝑛 = 2 , 𝐵 , ∅ ) ) |
| 87 |
|
iftrue |
⊢ ( 𝑛 = 2 → if ( 𝑛 = 2 , 𝐵 , ∅ ) = 𝐵 ) |
| 88 |
86 87
|
eqtrd |
⊢ ( 𝑛 = 2 → if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) = 𝐵 ) |
| 89 |
64
|
a1i |
⊢ ( 𝜑 → 2 ∈ ℕ ) |
| 90 |
4 88 89 19
|
fvmptd3 |
⊢ ( 𝜑 → ( 𝐶 ‘ 2 ) = 𝐵 ) |
| 91 |
79 90
|
uneq12d |
⊢ ( 𝜑 → ( ( 𝐶 ‘ 1 ) ∪ ( 𝐶 ‘ 2 ) ) = ( 𝐴 ∪ 𝐵 ) ) |
| 92 |
|
eqidd |
⊢ ( 𝜑 → ( 𝐴 ∪ 𝐵 ) = ( 𝐴 ∪ 𝐵 ) ) |
| 93 |
77 91 92
|
3eqtrd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ { 1 , 2 } ( 𝐶 ‘ 𝑛 ) = ( 𝐴 ∪ 𝐵 ) ) |
| 94 |
62 72 93
|
3eqtrd |
⊢ ( 𝜑 → ∪ 𝑛 ∈ ℕ ( 𝐶 ‘ 𝑛 ) = ( 𝐴 ∪ 𝐵 ) ) |
| 95 |
94
|
fveq2d |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ∪ 𝑛 ∈ ℕ ( 𝐶 ‘ 𝑛 ) ) = ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ) |
| 96 |
|
nfv |
⊢ Ⅎ 𝑛 𝜑 |
| 97 |
|
nnex |
⊢ ℕ ∈ V |
| 98 |
97
|
a1i |
⊢ ( 𝜑 → ℕ ∈ V ) |
| 99 |
67
|
a1i |
⊢ ( 𝜑 → { 1 , 2 } ⊆ ℕ ) |
| 100 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 1 , 2 } ) → 𝑋 ∈ Fin ) |
| 101 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 1 , 2 } ) → 𝜑 ) |
| 102 |
99
|
sselda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 1 , 2 } ) → 𝑛 ∈ ℕ ) |
| 103 |
35
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ 𝑛 ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 104 |
|
elpwi |
⊢ ( ( 𝐶 ‘ 𝑛 ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) → ( 𝐶 ‘ 𝑛 ) ⊆ ( ℝ ↑m 𝑋 ) ) |
| 105 |
103 104
|
syl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ℕ ) → ( 𝐶 ‘ 𝑛 ) ⊆ ( ℝ ↑m 𝑋 ) ) |
| 106 |
101 102 105
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 1 , 2 } ) → ( 𝐶 ‘ 𝑛 ) ⊆ ( ℝ ↑m 𝑋 ) ) |
| 107 |
100 106
|
ovncl |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ { 1 , 2 } ) → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) ∈ ( 0 [,] +∞ ) ) |
| 108 |
57
|
fveq2d |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ) → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) = ( ( voln* ‘ 𝑋 ) ‘ ∅ ) ) |
| 109 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ) → 𝑋 ∈ Fin ) |
| 110 |
109
|
ovn0 |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ) → ( ( voln* ‘ 𝑋 ) ‘ ∅ ) = 0 ) |
| 111 |
108 110
|
eqtrd |
⊢ ( ( 𝜑 ∧ 𝑛 ∈ ( ℕ ∖ { 1 , 2 } ) ) → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) = 0 ) |
| 112 |
96 98 99 107 111
|
sge0ss |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ { 1 , 2 } ↦ ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) ) ) ) |
| 113 |
112
|
eqcomd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) ) ) = ( Σ^ ‘ ( 𝑛 ∈ { 1 , 2 } ↦ ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) ) ) ) |
| 114 |
79 2
|
eqsstrd |
⊢ ( 𝜑 → ( 𝐶 ‘ 1 ) ⊆ ( ℝ ↑m 𝑋 ) ) |
| 115 |
1 114
|
ovncl |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 1 ) ) ∈ ( 0 [,] +∞ ) ) |
| 116 |
90 3
|
eqsstrd |
⊢ ( 𝜑 → ( 𝐶 ‘ 2 ) ⊆ ( ℝ ↑m 𝑋 ) ) |
| 117 |
1 116
|
ovncl |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 2 ) ) ∈ ( 0 [,] +∞ ) ) |
| 118 |
|
2fveq3 |
⊢ ( 𝑛 = 1 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) = ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 1 ) ) ) |
| 119 |
|
2fveq3 |
⊢ ( 𝑛 = 2 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) = ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 2 ) ) ) |
| 120 |
81
|
a1i |
⊢ ( 𝜑 → 1 ≠ 2 ) |
| 121 |
78 89 115 117 118 119 120
|
sge0pr |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ { 1 , 2 } ↦ ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) ) ) = ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 1 ) ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 2 ) ) ) ) |
| 122 |
79
|
fveq2d |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 1 ) ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ) |
| 123 |
90
|
fveq2d |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 2 ) ) = ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) ) |
| 124 |
122 123
|
oveq12d |
⊢ ( 𝜑 → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 1 ) ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 2 ) ) ) = ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) ) ) |
| 125 |
113 121 124
|
3eqtrd |
⊢ ( 𝜑 → ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) ) ) = ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) ) ) |
| 126 |
95 125
|
breq12d |
⊢ ( 𝜑 → ( ( ( voln* ‘ 𝑋 ) ‘ ∪ 𝑛 ∈ ℕ ( 𝐶 ‘ 𝑛 ) ) ≤ ( Σ^ ‘ ( 𝑛 ∈ ℕ ↦ ( ( voln* ‘ 𝑋 ) ‘ ( 𝐶 ‘ 𝑛 ) ) ) ) ↔ ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) ) ) ) |
| 127 |
36 126
|
mpbid |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) ) ) |