Metamath Proof Explorer


Theorem ovnsubadd2

Description: ( voln*X ) is subadditive. Proposition 115D (a)(iv) of Fremlin1 p. 31 . The special case of the union of 2 sets. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovnsubadd2.x ( 𝜑𝑋 ∈ Fin )
ovnsubadd2.a ( 𝜑𝐴 ⊆ ( ℝ ↑m 𝑋 ) )
ovnsubadd2.b ( 𝜑𝐵 ⊆ ( ℝ ↑m 𝑋 ) )
Assertion ovnsubadd2 ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴𝐵 ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) ) )

Proof

Step Hyp Ref Expression
1 ovnsubadd2.x ( 𝜑𝑋 ∈ Fin )
2 ovnsubadd2.a ( 𝜑𝐴 ⊆ ( ℝ ↑m 𝑋 ) )
3 ovnsubadd2.b ( 𝜑𝐵 ⊆ ( ℝ ↑m 𝑋 ) )
4 eqeq1 ( 𝑚 = 𝑛 → ( 𝑚 = 1 ↔ 𝑛 = 1 ) )
5 eqeq1 ( 𝑚 = 𝑛 → ( 𝑚 = 2 ↔ 𝑛 = 2 ) )
6 5 ifbid ( 𝑚 = 𝑛 → if ( 𝑚 = 2 , 𝐵 , ∅ ) = if ( 𝑛 = 2 , 𝐵 , ∅ ) )
7 4 6 ifbieq2d ( 𝑚 = 𝑛 → if ( 𝑚 = 1 , 𝐴 , if ( 𝑚 = 2 , 𝐵 , ∅ ) ) = if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) )
8 7 cbvmptv ( 𝑚 ∈ ℕ ↦ if ( 𝑚 = 1 , 𝐴 , if ( 𝑚 = 2 , 𝐵 , ∅ ) ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) )
9 1 2 3 8 ovnsubadd2lem ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴𝐵 ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) ) )