Step |
Hyp |
Ref |
Expression |
1 |
|
ovnsubadd2.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
ovnsubadd2.a |
⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) |
3 |
|
ovnsubadd2.b |
⊢ ( 𝜑 → 𝐵 ⊆ ( ℝ ↑m 𝑋 ) ) |
4 |
|
eqeq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 = 1 ↔ 𝑛 = 1 ) ) |
5 |
|
eqeq1 |
⊢ ( 𝑚 = 𝑛 → ( 𝑚 = 2 ↔ 𝑛 = 2 ) ) |
6 |
5
|
ifbid |
⊢ ( 𝑚 = 𝑛 → if ( 𝑚 = 2 , 𝐵 , ∅ ) = if ( 𝑛 = 2 , 𝐵 , ∅ ) ) |
7 |
4 6
|
ifbieq2d |
⊢ ( 𝑚 = 𝑛 → if ( 𝑚 = 1 , 𝐴 , if ( 𝑚 = 2 , 𝐵 , ∅ ) ) = if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ) |
8 |
7
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ if ( 𝑚 = 1 , 𝐴 , if ( 𝑚 = 2 , 𝐵 , ∅ ) ) ) = ( 𝑛 ∈ ℕ ↦ if ( 𝑛 = 1 , 𝐴 , if ( 𝑛 = 2 , 𝐵 , ∅ ) ) ) |
9 |
1 2 3 8
|
ovnsubadd2lem |
⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ ( 𝐴 ∪ 𝐵 ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ 𝐵 ) ) ) |