Metamath Proof Explorer


Theorem ovnsubadd2

Description: ( voln*X ) is subadditive. Proposition 115D (a)(iv) of Fremlin1 p. 31 . The special case of the union of 2 sets. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovnsubadd2.x
|- ( ph -> X e. Fin )
ovnsubadd2.a
|- ( ph -> A C_ ( RR ^m X ) )
ovnsubadd2.b
|- ( ph -> B C_ ( RR ^m X ) )
Assertion ovnsubadd2
|- ( ph -> ( ( voln* ` X ) ` ( A u. B ) ) <_ ( ( ( voln* ` X ) ` A ) +e ( ( voln* ` X ) ` B ) ) )

Proof

Step Hyp Ref Expression
1 ovnsubadd2.x
 |-  ( ph -> X e. Fin )
2 ovnsubadd2.a
 |-  ( ph -> A C_ ( RR ^m X ) )
3 ovnsubadd2.b
 |-  ( ph -> B C_ ( RR ^m X ) )
4 eqeq1
 |-  ( m = n -> ( m = 1 <-> n = 1 ) )
5 eqeq1
 |-  ( m = n -> ( m = 2 <-> n = 2 ) )
6 5 ifbid
 |-  ( m = n -> if ( m = 2 , B , (/) ) = if ( n = 2 , B , (/) ) )
7 4 6 ifbieq2d
 |-  ( m = n -> if ( m = 1 , A , if ( m = 2 , B , (/) ) ) = if ( n = 1 , A , if ( n = 2 , B , (/) ) ) )
8 7 cbvmptv
 |-  ( m e. NN |-> if ( m = 1 , A , if ( m = 2 , B , (/) ) ) ) = ( n e. NN |-> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) )
9 1 2 3 8 ovnsubadd2lem
 |-  ( ph -> ( ( voln* ` X ) ` ( A u. B ) ) <_ ( ( ( voln* ` X ) ` A ) +e ( ( voln* ` X ) ` B ) ) )