Step |
Hyp |
Ref |
Expression |
1 |
|
ovnsubadd2.x |
|- ( ph -> X e. Fin ) |
2 |
|
ovnsubadd2.a |
|- ( ph -> A C_ ( RR ^m X ) ) |
3 |
|
ovnsubadd2.b |
|- ( ph -> B C_ ( RR ^m X ) ) |
4 |
|
eqeq1 |
|- ( m = n -> ( m = 1 <-> n = 1 ) ) |
5 |
|
eqeq1 |
|- ( m = n -> ( m = 2 <-> n = 2 ) ) |
6 |
5
|
ifbid |
|- ( m = n -> if ( m = 2 , B , (/) ) = if ( n = 2 , B , (/) ) ) |
7 |
4 6
|
ifbieq2d |
|- ( m = n -> if ( m = 1 , A , if ( m = 2 , B , (/) ) ) = if ( n = 1 , A , if ( n = 2 , B , (/) ) ) ) |
8 |
7
|
cbvmptv |
|- ( m e. NN |-> if ( m = 1 , A , if ( m = 2 , B , (/) ) ) ) = ( n e. NN |-> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) ) |
9 |
1 2 3 8
|
ovnsubadd2lem |
|- ( ph -> ( ( voln* ` X ) ` ( A u. B ) ) <_ ( ( ( voln* ` X ) ` A ) +e ( ( voln* ` X ) ` B ) ) ) |