| Step | Hyp | Ref | Expression | 
						
							| 1 |  | ovnsubadd2lem.x |  |-  ( ph -> X e. Fin ) | 
						
							| 2 |  | ovnsubadd2lem.a |  |-  ( ph -> A C_ ( RR ^m X ) ) | 
						
							| 3 |  | ovnsubadd2lem.b |  |-  ( ph -> B C_ ( RR ^m X ) ) | 
						
							| 4 |  | ovnsubadd2lem.c |  |-  C = ( n e. NN |-> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) ) | 
						
							| 5 |  | iftrue |  |-  ( n = 1 -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = A ) | 
						
							| 6 | 5 | adantl |  |-  ( ( ph /\ n = 1 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = A ) | 
						
							| 7 |  | ovexd |  |-  ( ph -> ( RR ^m X ) e. _V ) | 
						
							| 8 | 7 2 | ssexd |  |-  ( ph -> A e. _V ) | 
						
							| 9 | 8 2 | elpwd |  |-  ( ph -> A e. ~P ( RR ^m X ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ph /\ n = 1 ) -> A e. ~P ( RR ^m X ) ) | 
						
							| 11 | 6 10 | eqeltrd |  |-  ( ( ph /\ n = 1 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. ~P ( RR ^m X ) ) | 
						
							| 12 | 11 | adantlr |  |-  ( ( ( ph /\ n e. NN ) /\ n = 1 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. ~P ( RR ^m X ) ) | 
						
							| 13 |  | simpl |  |-  ( ( -. n = 1 /\ n = 2 ) -> -. n = 1 ) | 
						
							| 14 | 13 | iffalsed |  |-  ( ( -. n = 1 /\ n = 2 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = if ( n = 2 , B , (/) ) ) | 
						
							| 15 |  | simpr |  |-  ( ( -. n = 1 /\ n = 2 ) -> n = 2 ) | 
						
							| 16 | 15 | iftrued |  |-  ( ( -. n = 1 /\ n = 2 ) -> if ( n = 2 , B , (/) ) = B ) | 
						
							| 17 | 14 16 | eqtrd |  |-  ( ( -. n = 1 /\ n = 2 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = B ) | 
						
							| 18 | 17 | adantll |  |-  ( ( ( ph /\ -. n = 1 ) /\ n = 2 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = B ) | 
						
							| 19 | 7 3 | ssexd |  |-  ( ph -> B e. _V ) | 
						
							| 20 | 19 3 | elpwd |  |-  ( ph -> B e. ~P ( RR ^m X ) ) | 
						
							| 21 | 20 | ad2antrr |  |-  ( ( ( ph /\ -. n = 1 ) /\ n = 2 ) -> B e. ~P ( RR ^m X ) ) | 
						
							| 22 | 18 21 | eqeltrd |  |-  ( ( ( ph /\ -. n = 1 ) /\ n = 2 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. ~P ( RR ^m X ) ) | 
						
							| 23 | 22 | adantllr |  |-  ( ( ( ( ph /\ n e. NN ) /\ -. n = 1 ) /\ n = 2 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. ~P ( RR ^m X ) ) | 
						
							| 24 |  | simpl |  |-  ( ( -. n = 1 /\ -. n = 2 ) -> -. n = 1 ) | 
						
							| 25 | 24 | iffalsed |  |-  ( ( -. n = 1 /\ -. n = 2 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = if ( n = 2 , B , (/) ) ) | 
						
							| 26 |  | simpr |  |-  ( ( -. n = 1 /\ -. n = 2 ) -> -. n = 2 ) | 
						
							| 27 | 26 | iffalsed |  |-  ( ( -. n = 1 /\ -. n = 2 ) -> if ( n = 2 , B , (/) ) = (/) ) | 
						
							| 28 | 25 27 | eqtrd |  |-  ( ( -. n = 1 /\ -. n = 2 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = (/) ) | 
						
							| 29 |  | 0elpw |  |-  (/) e. ~P ( RR ^m X ) | 
						
							| 30 | 29 | a1i |  |-  ( ( -. n = 1 /\ -. n = 2 ) -> (/) e. ~P ( RR ^m X ) ) | 
						
							| 31 | 28 30 | eqeltrd |  |-  ( ( -. n = 1 /\ -. n = 2 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. ~P ( RR ^m X ) ) | 
						
							| 32 | 31 | adantll |  |-  ( ( ( ( ph /\ n e. NN ) /\ -. n = 1 ) /\ -. n = 2 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. ~P ( RR ^m X ) ) | 
						
							| 33 | 23 32 | pm2.61dan |  |-  ( ( ( ph /\ n e. NN ) /\ -. n = 1 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. ~P ( RR ^m X ) ) | 
						
							| 34 | 12 33 | pm2.61dan |  |-  ( ( ph /\ n e. NN ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. ~P ( RR ^m X ) ) | 
						
							| 35 | 34 4 | fmptd |  |-  ( ph -> C : NN --> ~P ( RR ^m X ) ) | 
						
							| 36 | 1 35 | ovnsubadd |  |-  ( ph -> ( ( voln* ` X ) ` U_ n e. NN ( C ` n ) ) <_ ( sum^ ` ( n e. NN |-> ( ( voln* ` X ) ` ( C ` n ) ) ) ) ) | 
						
							| 37 |  | eldifi |  |-  ( n e. ( NN \ { 1 , 2 } ) -> n e. NN ) | 
						
							| 38 | 37 | adantl |  |-  ( ( ph /\ n e. ( NN \ { 1 , 2 } ) ) -> n e. NN ) | 
						
							| 39 |  | eldifn |  |-  ( n e. ( NN \ { 1 , 2 } ) -> -. n e. { 1 , 2 } ) | 
						
							| 40 |  | vex |  |-  n e. _V | 
						
							| 41 | 40 | a1i |  |-  ( -. n e. { 1 , 2 } -> n e. _V ) | 
						
							| 42 |  | id |  |-  ( -. n e. { 1 , 2 } -> -. n e. { 1 , 2 } ) | 
						
							| 43 | 41 42 | nelpr1 |  |-  ( -. n e. { 1 , 2 } -> n =/= 1 ) | 
						
							| 44 | 43 | neneqd |  |-  ( -. n e. { 1 , 2 } -> -. n = 1 ) | 
						
							| 45 | 39 44 | syl |  |-  ( n e. ( NN \ { 1 , 2 } ) -> -. n = 1 ) | 
						
							| 46 | 41 42 | nelpr2 |  |-  ( -. n e. { 1 , 2 } -> n =/= 2 ) | 
						
							| 47 | 46 | neneqd |  |-  ( -. n e. { 1 , 2 } -> -. n = 2 ) | 
						
							| 48 | 39 47 | syl |  |-  ( n e. ( NN \ { 1 , 2 } ) -> -. n = 2 ) | 
						
							| 49 | 45 48 28 | syl2anc |  |-  ( n e. ( NN \ { 1 , 2 } ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = (/) ) | 
						
							| 50 |  | 0ex |  |-  (/) e. _V | 
						
							| 51 | 50 | a1i |  |-  ( n e. ( NN \ { 1 , 2 } ) -> (/) e. _V ) | 
						
							| 52 | 49 51 | eqeltrd |  |-  ( n e. ( NN \ { 1 , 2 } ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. _V ) | 
						
							| 53 | 52 | adantl |  |-  ( ( ph /\ n e. ( NN \ { 1 , 2 } ) ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. _V ) | 
						
							| 54 | 4 | fvmpt2 |  |-  ( ( n e. NN /\ if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. _V ) -> ( C ` n ) = if ( n = 1 , A , if ( n = 2 , B , (/) ) ) ) | 
						
							| 55 | 38 53 54 | syl2anc |  |-  ( ( ph /\ n e. ( NN \ { 1 , 2 } ) ) -> ( C ` n ) = if ( n = 1 , A , if ( n = 2 , B , (/) ) ) ) | 
						
							| 56 | 49 | adantl |  |-  ( ( ph /\ n e. ( NN \ { 1 , 2 } ) ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = (/) ) | 
						
							| 57 | 55 56 | eqtrd |  |-  ( ( ph /\ n e. ( NN \ { 1 , 2 } ) ) -> ( C ` n ) = (/) ) | 
						
							| 58 | 57 | ralrimiva |  |-  ( ph -> A. n e. ( NN \ { 1 , 2 } ) ( C ` n ) = (/) ) | 
						
							| 59 |  | nfcv |  |-  F/_ n ( NN \ { 1 , 2 } ) | 
						
							| 60 | 59 | iunxdif3 |  |-  ( A. n e. ( NN \ { 1 , 2 } ) ( C ` n ) = (/) -> U_ n e. ( NN \ ( NN \ { 1 , 2 } ) ) ( C ` n ) = U_ n e. NN ( C ` n ) ) | 
						
							| 61 | 58 60 | syl |  |-  ( ph -> U_ n e. ( NN \ ( NN \ { 1 , 2 } ) ) ( C ` n ) = U_ n e. NN ( C ` n ) ) | 
						
							| 62 | 61 | eqcomd |  |-  ( ph -> U_ n e. NN ( C ` n ) = U_ n e. ( NN \ ( NN \ { 1 , 2 } ) ) ( C ` n ) ) | 
						
							| 63 |  | 1nn |  |-  1 e. NN | 
						
							| 64 |  | 2nn |  |-  2 e. NN | 
						
							| 65 | 63 64 | pm3.2i |  |-  ( 1 e. NN /\ 2 e. NN ) | 
						
							| 66 |  | prssi |  |-  ( ( 1 e. NN /\ 2 e. NN ) -> { 1 , 2 } C_ NN ) | 
						
							| 67 | 65 66 | ax-mp |  |-  { 1 , 2 } C_ NN | 
						
							| 68 |  | dfss4 |  |-  ( { 1 , 2 } C_ NN <-> ( NN \ ( NN \ { 1 , 2 } ) ) = { 1 , 2 } ) | 
						
							| 69 | 67 68 | mpbi |  |-  ( NN \ ( NN \ { 1 , 2 } ) ) = { 1 , 2 } | 
						
							| 70 |  | iuneq1 |  |-  ( ( NN \ ( NN \ { 1 , 2 } ) ) = { 1 , 2 } -> U_ n e. ( NN \ ( NN \ { 1 , 2 } ) ) ( C ` n ) = U_ n e. { 1 , 2 } ( C ` n ) ) | 
						
							| 71 | 69 70 | ax-mp |  |-  U_ n e. ( NN \ ( NN \ { 1 , 2 } ) ) ( C ` n ) = U_ n e. { 1 , 2 } ( C ` n ) | 
						
							| 72 | 71 | a1i |  |-  ( ph -> U_ n e. ( NN \ ( NN \ { 1 , 2 } ) ) ( C ` n ) = U_ n e. { 1 , 2 } ( C ` n ) ) | 
						
							| 73 |  | fveq2 |  |-  ( n = 1 -> ( C ` n ) = ( C ` 1 ) ) | 
						
							| 74 |  | fveq2 |  |-  ( n = 2 -> ( C ` n ) = ( C ` 2 ) ) | 
						
							| 75 | 73 74 | iunxprg |  |-  ( ( 1 e. NN /\ 2 e. NN ) -> U_ n e. { 1 , 2 } ( C ` n ) = ( ( C ` 1 ) u. ( C ` 2 ) ) ) | 
						
							| 76 | 63 64 75 | mp2an |  |-  U_ n e. { 1 , 2 } ( C ` n ) = ( ( C ` 1 ) u. ( C ` 2 ) ) | 
						
							| 77 | 76 | a1i |  |-  ( ph -> U_ n e. { 1 , 2 } ( C ` n ) = ( ( C ` 1 ) u. ( C ` 2 ) ) ) | 
						
							| 78 | 63 | a1i |  |-  ( ph -> 1 e. NN ) | 
						
							| 79 | 4 5 78 8 | fvmptd3 |  |-  ( ph -> ( C ` 1 ) = A ) | 
						
							| 80 |  | id |  |-  ( n = 2 -> n = 2 ) | 
						
							| 81 |  | 1ne2 |  |-  1 =/= 2 | 
						
							| 82 | 81 | necomi |  |-  2 =/= 1 | 
						
							| 83 | 82 | a1i |  |-  ( n = 2 -> 2 =/= 1 ) | 
						
							| 84 | 80 83 | eqnetrd |  |-  ( n = 2 -> n =/= 1 ) | 
						
							| 85 | 84 | neneqd |  |-  ( n = 2 -> -. n = 1 ) | 
						
							| 86 | 85 | iffalsed |  |-  ( n = 2 -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = if ( n = 2 , B , (/) ) ) | 
						
							| 87 |  | iftrue |  |-  ( n = 2 -> if ( n = 2 , B , (/) ) = B ) | 
						
							| 88 | 86 87 | eqtrd |  |-  ( n = 2 -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = B ) | 
						
							| 89 | 64 | a1i |  |-  ( ph -> 2 e. NN ) | 
						
							| 90 | 4 88 89 19 | fvmptd3 |  |-  ( ph -> ( C ` 2 ) = B ) | 
						
							| 91 | 79 90 | uneq12d |  |-  ( ph -> ( ( C ` 1 ) u. ( C ` 2 ) ) = ( A u. B ) ) | 
						
							| 92 |  | eqidd |  |-  ( ph -> ( A u. B ) = ( A u. B ) ) | 
						
							| 93 | 77 91 92 | 3eqtrd |  |-  ( ph -> U_ n e. { 1 , 2 } ( C ` n ) = ( A u. B ) ) | 
						
							| 94 | 62 72 93 | 3eqtrd |  |-  ( ph -> U_ n e. NN ( C ` n ) = ( A u. B ) ) | 
						
							| 95 | 94 | fveq2d |  |-  ( ph -> ( ( voln* ` X ) ` U_ n e. NN ( C ` n ) ) = ( ( voln* ` X ) ` ( A u. B ) ) ) | 
						
							| 96 |  | nfv |  |-  F/ n ph | 
						
							| 97 |  | nnex |  |-  NN e. _V | 
						
							| 98 | 97 | a1i |  |-  ( ph -> NN e. _V ) | 
						
							| 99 | 67 | a1i |  |-  ( ph -> { 1 , 2 } C_ NN ) | 
						
							| 100 | 1 | adantr |  |-  ( ( ph /\ n e. { 1 , 2 } ) -> X e. Fin ) | 
						
							| 101 |  | simpl |  |-  ( ( ph /\ n e. { 1 , 2 } ) -> ph ) | 
						
							| 102 | 99 | sselda |  |-  ( ( ph /\ n e. { 1 , 2 } ) -> n e. NN ) | 
						
							| 103 | 35 | ffvelcdmda |  |-  ( ( ph /\ n e. NN ) -> ( C ` n ) e. ~P ( RR ^m X ) ) | 
						
							| 104 |  | elpwi |  |-  ( ( C ` n ) e. ~P ( RR ^m X ) -> ( C ` n ) C_ ( RR ^m X ) ) | 
						
							| 105 | 103 104 | syl |  |-  ( ( ph /\ n e. NN ) -> ( C ` n ) C_ ( RR ^m X ) ) | 
						
							| 106 | 101 102 105 | syl2anc |  |-  ( ( ph /\ n e. { 1 , 2 } ) -> ( C ` n ) C_ ( RR ^m X ) ) | 
						
							| 107 | 100 106 | ovncl |  |-  ( ( ph /\ n e. { 1 , 2 } ) -> ( ( voln* ` X ) ` ( C ` n ) ) e. ( 0 [,] +oo ) ) | 
						
							| 108 | 57 | fveq2d |  |-  ( ( ph /\ n e. ( NN \ { 1 , 2 } ) ) -> ( ( voln* ` X ) ` ( C ` n ) ) = ( ( voln* ` X ) ` (/) ) ) | 
						
							| 109 | 1 | adantr |  |-  ( ( ph /\ n e. ( NN \ { 1 , 2 } ) ) -> X e. Fin ) | 
						
							| 110 | 109 | ovn0 |  |-  ( ( ph /\ n e. ( NN \ { 1 , 2 } ) ) -> ( ( voln* ` X ) ` (/) ) = 0 ) | 
						
							| 111 | 108 110 | eqtrd |  |-  ( ( ph /\ n e. ( NN \ { 1 , 2 } ) ) -> ( ( voln* ` X ) ` ( C ` n ) ) = 0 ) | 
						
							| 112 | 96 98 99 107 111 | sge0ss |  |-  ( ph -> ( sum^ ` ( n e. { 1 , 2 } |-> ( ( voln* ` X ) ` ( C ` n ) ) ) ) = ( sum^ ` ( n e. NN |-> ( ( voln* ` X ) ` ( C ` n ) ) ) ) ) | 
						
							| 113 | 112 | eqcomd |  |-  ( ph -> ( sum^ ` ( n e. NN |-> ( ( voln* ` X ) ` ( C ` n ) ) ) ) = ( sum^ ` ( n e. { 1 , 2 } |-> ( ( voln* ` X ) ` ( C ` n ) ) ) ) ) | 
						
							| 114 | 79 2 | eqsstrd |  |-  ( ph -> ( C ` 1 ) C_ ( RR ^m X ) ) | 
						
							| 115 | 1 114 | ovncl |  |-  ( ph -> ( ( voln* ` X ) ` ( C ` 1 ) ) e. ( 0 [,] +oo ) ) | 
						
							| 116 | 90 3 | eqsstrd |  |-  ( ph -> ( C ` 2 ) C_ ( RR ^m X ) ) | 
						
							| 117 | 1 116 | ovncl |  |-  ( ph -> ( ( voln* ` X ) ` ( C ` 2 ) ) e. ( 0 [,] +oo ) ) | 
						
							| 118 |  | 2fveq3 |  |-  ( n = 1 -> ( ( voln* ` X ) ` ( C ` n ) ) = ( ( voln* ` X ) ` ( C ` 1 ) ) ) | 
						
							| 119 |  | 2fveq3 |  |-  ( n = 2 -> ( ( voln* ` X ) ` ( C ` n ) ) = ( ( voln* ` X ) ` ( C ` 2 ) ) ) | 
						
							| 120 | 81 | a1i |  |-  ( ph -> 1 =/= 2 ) | 
						
							| 121 | 78 89 115 117 118 119 120 | sge0pr |  |-  ( ph -> ( sum^ ` ( n e. { 1 , 2 } |-> ( ( voln* ` X ) ` ( C ` n ) ) ) ) = ( ( ( voln* ` X ) ` ( C ` 1 ) ) +e ( ( voln* ` X ) ` ( C ` 2 ) ) ) ) | 
						
							| 122 | 79 | fveq2d |  |-  ( ph -> ( ( voln* ` X ) ` ( C ` 1 ) ) = ( ( voln* ` X ) ` A ) ) | 
						
							| 123 | 90 | fveq2d |  |-  ( ph -> ( ( voln* ` X ) ` ( C ` 2 ) ) = ( ( voln* ` X ) ` B ) ) | 
						
							| 124 | 122 123 | oveq12d |  |-  ( ph -> ( ( ( voln* ` X ) ` ( C ` 1 ) ) +e ( ( voln* ` X ) ` ( C ` 2 ) ) ) = ( ( ( voln* ` X ) ` A ) +e ( ( voln* ` X ) ` B ) ) ) | 
						
							| 125 | 113 121 124 | 3eqtrd |  |-  ( ph -> ( sum^ ` ( n e. NN |-> ( ( voln* ` X ) ` ( C ` n ) ) ) ) = ( ( ( voln* ` X ) ` A ) +e ( ( voln* ` X ) ` B ) ) ) | 
						
							| 126 | 95 125 | breq12d |  |-  ( ph -> ( ( ( voln* ` X ) ` U_ n e. NN ( C ` n ) ) <_ ( sum^ ` ( n e. NN |-> ( ( voln* ` X ) ` ( C ` n ) ) ) ) <-> ( ( voln* ` X ) ` ( A u. B ) ) <_ ( ( ( voln* ` X ) ` A ) +e ( ( voln* ` X ) ` B ) ) ) ) | 
						
							| 127 | 36 126 | mpbid |  |-  ( ph -> ( ( voln* ` X ) ` ( A u. B ) ) <_ ( ( ( voln* ` X ) ` A ) +e ( ( voln* ` X ) ` B ) ) ) |