Step |
Hyp |
Ref |
Expression |
1 |
|
ovnsubadd2lem.x |
|- ( ph -> X e. Fin ) |
2 |
|
ovnsubadd2lem.a |
|- ( ph -> A C_ ( RR ^m X ) ) |
3 |
|
ovnsubadd2lem.b |
|- ( ph -> B C_ ( RR ^m X ) ) |
4 |
|
ovnsubadd2lem.c |
|- C = ( n e. NN |-> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) ) |
5 |
|
iftrue |
|- ( n = 1 -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = A ) |
6 |
5
|
adantl |
|- ( ( ph /\ n = 1 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = A ) |
7 |
|
ovexd |
|- ( ph -> ( RR ^m X ) e. _V ) |
8 |
7 2
|
ssexd |
|- ( ph -> A e. _V ) |
9 |
8 2
|
elpwd |
|- ( ph -> A e. ~P ( RR ^m X ) ) |
10 |
9
|
adantr |
|- ( ( ph /\ n = 1 ) -> A e. ~P ( RR ^m X ) ) |
11 |
6 10
|
eqeltrd |
|- ( ( ph /\ n = 1 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. ~P ( RR ^m X ) ) |
12 |
11
|
adantlr |
|- ( ( ( ph /\ n e. NN ) /\ n = 1 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. ~P ( RR ^m X ) ) |
13 |
|
simpl |
|- ( ( -. n = 1 /\ n = 2 ) -> -. n = 1 ) |
14 |
13
|
iffalsed |
|- ( ( -. n = 1 /\ n = 2 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = if ( n = 2 , B , (/) ) ) |
15 |
|
simpr |
|- ( ( -. n = 1 /\ n = 2 ) -> n = 2 ) |
16 |
15
|
iftrued |
|- ( ( -. n = 1 /\ n = 2 ) -> if ( n = 2 , B , (/) ) = B ) |
17 |
14 16
|
eqtrd |
|- ( ( -. n = 1 /\ n = 2 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = B ) |
18 |
17
|
adantll |
|- ( ( ( ph /\ -. n = 1 ) /\ n = 2 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = B ) |
19 |
7 3
|
ssexd |
|- ( ph -> B e. _V ) |
20 |
19 3
|
elpwd |
|- ( ph -> B e. ~P ( RR ^m X ) ) |
21 |
20
|
ad2antrr |
|- ( ( ( ph /\ -. n = 1 ) /\ n = 2 ) -> B e. ~P ( RR ^m X ) ) |
22 |
18 21
|
eqeltrd |
|- ( ( ( ph /\ -. n = 1 ) /\ n = 2 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. ~P ( RR ^m X ) ) |
23 |
22
|
adantllr |
|- ( ( ( ( ph /\ n e. NN ) /\ -. n = 1 ) /\ n = 2 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. ~P ( RR ^m X ) ) |
24 |
|
simpl |
|- ( ( -. n = 1 /\ -. n = 2 ) -> -. n = 1 ) |
25 |
24
|
iffalsed |
|- ( ( -. n = 1 /\ -. n = 2 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = if ( n = 2 , B , (/) ) ) |
26 |
|
simpr |
|- ( ( -. n = 1 /\ -. n = 2 ) -> -. n = 2 ) |
27 |
26
|
iffalsed |
|- ( ( -. n = 1 /\ -. n = 2 ) -> if ( n = 2 , B , (/) ) = (/) ) |
28 |
25 27
|
eqtrd |
|- ( ( -. n = 1 /\ -. n = 2 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = (/) ) |
29 |
|
0elpw |
|- (/) e. ~P ( RR ^m X ) |
30 |
29
|
a1i |
|- ( ( -. n = 1 /\ -. n = 2 ) -> (/) e. ~P ( RR ^m X ) ) |
31 |
28 30
|
eqeltrd |
|- ( ( -. n = 1 /\ -. n = 2 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. ~P ( RR ^m X ) ) |
32 |
31
|
adantll |
|- ( ( ( ( ph /\ n e. NN ) /\ -. n = 1 ) /\ -. n = 2 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. ~P ( RR ^m X ) ) |
33 |
23 32
|
pm2.61dan |
|- ( ( ( ph /\ n e. NN ) /\ -. n = 1 ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. ~P ( RR ^m X ) ) |
34 |
12 33
|
pm2.61dan |
|- ( ( ph /\ n e. NN ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. ~P ( RR ^m X ) ) |
35 |
34 4
|
fmptd |
|- ( ph -> C : NN --> ~P ( RR ^m X ) ) |
36 |
1 35
|
ovnsubadd |
|- ( ph -> ( ( voln* ` X ) ` U_ n e. NN ( C ` n ) ) <_ ( sum^ ` ( n e. NN |-> ( ( voln* ` X ) ` ( C ` n ) ) ) ) ) |
37 |
|
eldifi |
|- ( n e. ( NN \ { 1 , 2 } ) -> n e. NN ) |
38 |
37
|
adantl |
|- ( ( ph /\ n e. ( NN \ { 1 , 2 } ) ) -> n e. NN ) |
39 |
|
eldifn |
|- ( n e. ( NN \ { 1 , 2 } ) -> -. n e. { 1 , 2 } ) |
40 |
|
vex |
|- n e. _V |
41 |
40
|
a1i |
|- ( -. n e. { 1 , 2 } -> n e. _V ) |
42 |
|
id |
|- ( -. n e. { 1 , 2 } -> -. n e. { 1 , 2 } ) |
43 |
41 42
|
nelpr1 |
|- ( -. n e. { 1 , 2 } -> n =/= 1 ) |
44 |
43
|
neneqd |
|- ( -. n e. { 1 , 2 } -> -. n = 1 ) |
45 |
39 44
|
syl |
|- ( n e. ( NN \ { 1 , 2 } ) -> -. n = 1 ) |
46 |
41 42
|
nelpr2 |
|- ( -. n e. { 1 , 2 } -> n =/= 2 ) |
47 |
46
|
neneqd |
|- ( -. n e. { 1 , 2 } -> -. n = 2 ) |
48 |
39 47
|
syl |
|- ( n e. ( NN \ { 1 , 2 } ) -> -. n = 2 ) |
49 |
45 48 28
|
syl2anc |
|- ( n e. ( NN \ { 1 , 2 } ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = (/) ) |
50 |
|
0ex |
|- (/) e. _V |
51 |
50
|
a1i |
|- ( n e. ( NN \ { 1 , 2 } ) -> (/) e. _V ) |
52 |
49 51
|
eqeltrd |
|- ( n e. ( NN \ { 1 , 2 } ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. _V ) |
53 |
52
|
adantl |
|- ( ( ph /\ n e. ( NN \ { 1 , 2 } ) ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. _V ) |
54 |
4
|
fvmpt2 |
|- ( ( n e. NN /\ if ( n = 1 , A , if ( n = 2 , B , (/) ) ) e. _V ) -> ( C ` n ) = if ( n = 1 , A , if ( n = 2 , B , (/) ) ) ) |
55 |
38 53 54
|
syl2anc |
|- ( ( ph /\ n e. ( NN \ { 1 , 2 } ) ) -> ( C ` n ) = if ( n = 1 , A , if ( n = 2 , B , (/) ) ) ) |
56 |
49
|
adantl |
|- ( ( ph /\ n e. ( NN \ { 1 , 2 } ) ) -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = (/) ) |
57 |
55 56
|
eqtrd |
|- ( ( ph /\ n e. ( NN \ { 1 , 2 } ) ) -> ( C ` n ) = (/) ) |
58 |
57
|
ralrimiva |
|- ( ph -> A. n e. ( NN \ { 1 , 2 } ) ( C ` n ) = (/) ) |
59 |
|
nfcv |
|- F/_ n ( NN \ { 1 , 2 } ) |
60 |
59
|
iunxdif3 |
|- ( A. n e. ( NN \ { 1 , 2 } ) ( C ` n ) = (/) -> U_ n e. ( NN \ ( NN \ { 1 , 2 } ) ) ( C ` n ) = U_ n e. NN ( C ` n ) ) |
61 |
58 60
|
syl |
|- ( ph -> U_ n e. ( NN \ ( NN \ { 1 , 2 } ) ) ( C ` n ) = U_ n e. NN ( C ` n ) ) |
62 |
61
|
eqcomd |
|- ( ph -> U_ n e. NN ( C ` n ) = U_ n e. ( NN \ ( NN \ { 1 , 2 } ) ) ( C ` n ) ) |
63 |
|
1nn |
|- 1 e. NN |
64 |
|
2nn |
|- 2 e. NN |
65 |
63 64
|
pm3.2i |
|- ( 1 e. NN /\ 2 e. NN ) |
66 |
|
prssi |
|- ( ( 1 e. NN /\ 2 e. NN ) -> { 1 , 2 } C_ NN ) |
67 |
65 66
|
ax-mp |
|- { 1 , 2 } C_ NN |
68 |
|
dfss4 |
|- ( { 1 , 2 } C_ NN <-> ( NN \ ( NN \ { 1 , 2 } ) ) = { 1 , 2 } ) |
69 |
67 68
|
mpbi |
|- ( NN \ ( NN \ { 1 , 2 } ) ) = { 1 , 2 } |
70 |
|
iuneq1 |
|- ( ( NN \ ( NN \ { 1 , 2 } ) ) = { 1 , 2 } -> U_ n e. ( NN \ ( NN \ { 1 , 2 } ) ) ( C ` n ) = U_ n e. { 1 , 2 } ( C ` n ) ) |
71 |
69 70
|
ax-mp |
|- U_ n e. ( NN \ ( NN \ { 1 , 2 } ) ) ( C ` n ) = U_ n e. { 1 , 2 } ( C ` n ) |
72 |
71
|
a1i |
|- ( ph -> U_ n e. ( NN \ ( NN \ { 1 , 2 } ) ) ( C ` n ) = U_ n e. { 1 , 2 } ( C ` n ) ) |
73 |
|
fveq2 |
|- ( n = 1 -> ( C ` n ) = ( C ` 1 ) ) |
74 |
|
fveq2 |
|- ( n = 2 -> ( C ` n ) = ( C ` 2 ) ) |
75 |
73 74
|
iunxprg |
|- ( ( 1 e. NN /\ 2 e. NN ) -> U_ n e. { 1 , 2 } ( C ` n ) = ( ( C ` 1 ) u. ( C ` 2 ) ) ) |
76 |
63 64 75
|
mp2an |
|- U_ n e. { 1 , 2 } ( C ` n ) = ( ( C ` 1 ) u. ( C ` 2 ) ) |
77 |
76
|
a1i |
|- ( ph -> U_ n e. { 1 , 2 } ( C ` n ) = ( ( C ` 1 ) u. ( C ` 2 ) ) ) |
78 |
63
|
a1i |
|- ( ph -> 1 e. NN ) |
79 |
4 5 78 8
|
fvmptd3 |
|- ( ph -> ( C ` 1 ) = A ) |
80 |
|
id |
|- ( n = 2 -> n = 2 ) |
81 |
|
1ne2 |
|- 1 =/= 2 |
82 |
81
|
necomi |
|- 2 =/= 1 |
83 |
82
|
a1i |
|- ( n = 2 -> 2 =/= 1 ) |
84 |
80 83
|
eqnetrd |
|- ( n = 2 -> n =/= 1 ) |
85 |
84
|
neneqd |
|- ( n = 2 -> -. n = 1 ) |
86 |
85
|
iffalsed |
|- ( n = 2 -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = if ( n = 2 , B , (/) ) ) |
87 |
|
iftrue |
|- ( n = 2 -> if ( n = 2 , B , (/) ) = B ) |
88 |
86 87
|
eqtrd |
|- ( n = 2 -> if ( n = 1 , A , if ( n = 2 , B , (/) ) ) = B ) |
89 |
64
|
a1i |
|- ( ph -> 2 e. NN ) |
90 |
4 88 89 19
|
fvmptd3 |
|- ( ph -> ( C ` 2 ) = B ) |
91 |
79 90
|
uneq12d |
|- ( ph -> ( ( C ` 1 ) u. ( C ` 2 ) ) = ( A u. B ) ) |
92 |
|
eqidd |
|- ( ph -> ( A u. B ) = ( A u. B ) ) |
93 |
77 91 92
|
3eqtrd |
|- ( ph -> U_ n e. { 1 , 2 } ( C ` n ) = ( A u. B ) ) |
94 |
62 72 93
|
3eqtrd |
|- ( ph -> U_ n e. NN ( C ` n ) = ( A u. B ) ) |
95 |
94
|
fveq2d |
|- ( ph -> ( ( voln* ` X ) ` U_ n e. NN ( C ` n ) ) = ( ( voln* ` X ) ` ( A u. B ) ) ) |
96 |
|
nfv |
|- F/ n ph |
97 |
|
nnex |
|- NN e. _V |
98 |
97
|
a1i |
|- ( ph -> NN e. _V ) |
99 |
67
|
a1i |
|- ( ph -> { 1 , 2 } C_ NN ) |
100 |
1
|
adantr |
|- ( ( ph /\ n e. { 1 , 2 } ) -> X e. Fin ) |
101 |
|
simpl |
|- ( ( ph /\ n e. { 1 , 2 } ) -> ph ) |
102 |
99
|
sselda |
|- ( ( ph /\ n e. { 1 , 2 } ) -> n e. NN ) |
103 |
35
|
ffvelrnda |
|- ( ( ph /\ n e. NN ) -> ( C ` n ) e. ~P ( RR ^m X ) ) |
104 |
|
elpwi |
|- ( ( C ` n ) e. ~P ( RR ^m X ) -> ( C ` n ) C_ ( RR ^m X ) ) |
105 |
103 104
|
syl |
|- ( ( ph /\ n e. NN ) -> ( C ` n ) C_ ( RR ^m X ) ) |
106 |
101 102 105
|
syl2anc |
|- ( ( ph /\ n e. { 1 , 2 } ) -> ( C ` n ) C_ ( RR ^m X ) ) |
107 |
100 106
|
ovncl |
|- ( ( ph /\ n e. { 1 , 2 } ) -> ( ( voln* ` X ) ` ( C ` n ) ) e. ( 0 [,] +oo ) ) |
108 |
57
|
fveq2d |
|- ( ( ph /\ n e. ( NN \ { 1 , 2 } ) ) -> ( ( voln* ` X ) ` ( C ` n ) ) = ( ( voln* ` X ) ` (/) ) ) |
109 |
1
|
adantr |
|- ( ( ph /\ n e. ( NN \ { 1 , 2 } ) ) -> X e. Fin ) |
110 |
109
|
ovn0 |
|- ( ( ph /\ n e. ( NN \ { 1 , 2 } ) ) -> ( ( voln* ` X ) ` (/) ) = 0 ) |
111 |
108 110
|
eqtrd |
|- ( ( ph /\ n e. ( NN \ { 1 , 2 } ) ) -> ( ( voln* ` X ) ` ( C ` n ) ) = 0 ) |
112 |
96 98 99 107 111
|
sge0ss |
|- ( ph -> ( sum^ ` ( n e. { 1 , 2 } |-> ( ( voln* ` X ) ` ( C ` n ) ) ) ) = ( sum^ ` ( n e. NN |-> ( ( voln* ` X ) ` ( C ` n ) ) ) ) ) |
113 |
112
|
eqcomd |
|- ( ph -> ( sum^ ` ( n e. NN |-> ( ( voln* ` X ) ` ( C ` n ) ) ) ) = ( sum^ ` ( n e. { 1 , 2 } |-> ( ( voln* ` X ) ` ( C ` n ) ) ) ) ) |
114 |
79 2
|
eqsstrd |
|- ( ph -> ( C ` 1 ) C_ ( RR ^m X ) ) |
115 |
1 114
|
ovncl |
|- ( ph -> ( ( voln* ` X ) ` ( C ` 1 ) ) e. ( 0 [,] +oo ) ) |
116 |
90 3
|
eqsstrd |
|- ( ph -> ( C ` 2 ) C_ ( RR ^m X ) ) |
117 |
1 116
|
ovncl |
|- ( ph -> ( ( voln* ` X ) ` ( C ` 2 ) ) e. ( 0 [,] +oo ) ) |
118 |
|
2fveq3 |
|- ( n = 1 -> ( ( voln* ` X ) ` ( C ` n ) ) = ( ( voln* ` X ) ` ( C ` 1 ) ) ) |
119 |
|
2fveq3 |
|- ( n = 2 -> ( ( voln* ` X ) ` ( C ` n ) ) = ( ( voln* ` X ) ` ( C ` 2 ) ) ) |
120 |
81
|
a1i |
|- ( ph -> 1 =/= 2 ) |
121 |
78 89 115 117 118 119 120
|
sge0pr |
|- ( ph -> ( sum^ ` ( n e. { 1 , 2 } |-> ( ( voln* ` X ) ` ( C ` n ) ) ) ) = ( ( ( voln* ` X ) ` ( C ` 1 ) ) +e ( ( voln* ` X ) ` ( C ` 2 ) ) ) ) |
122 |
79
|
fveq2d |
|- ( ph -> ( ( voln* ` X ) ` ( C ` 1 ) ) = ( ( voln* ` X ) ` A ) ) |
123 |
90
|
fveq2d |
|- ( ph -> ( ( voln* ` X ) ` ( C ` 2 ) ) = ( ( voln* ` X ) ` B ) ) |
124 |
122 123
|
oveq12d |
|- ( ph -> ( ( ( voln* ` X ) ` ( C ` 1 ) ) +e ( ( voln* ` X ) ` ( C ` 2 ) ) ) = ( ( ( voln* ` X ) ` A ) +e ( ( voln* ` X ) ` B ) ) ) |
125 |
113 121 124
|
3eqtrd |
|- ( ph -> ( sum^ ` ( n e. NN |-> ( ( voln* ` X ) ` ( C ` n ) ) ) ) = ( ( ( voln* ` X ) ` A ) +e ( ( voln* ` X ) ` B ) ) ) |
126 |
95 125
|
breq12d |
|- ( ph -> ( ( ( voln* ` X ) ` U_ n e. NN ( C ` n ) ) <_ ( sum^ ` ( n e. NN |-> ( ( voln* ` X ) ` ( C ` n ) ) ) ) <-> ( ( voln* ` X ) ` ( A u. B ) ) <_ ( ( ( voln* ` X ) ` A ) +e ( ( voln* ` X ) ` B ) ) ) ) |
127 |
36 126
|
mpbid |
|- ( ph -> ( ( voln* ` X ) ` ( A u. B ) ) <_ ( ( ( voln* ` X ) ` A ) +e ( ( voln* ` X ) ` B ) ) ) |