Description: The Lebesgue outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ovncl.1 | |- ( ph -> X e. Fin ) |
|
ovncl.2 | |- ( ph -> A C_ ( RR ^m X ) ) |
||
Assertion | ovncl | |- ( ph -> ( ( voln* ` X ) ` A ) e. ( 0 [,] +oo ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovncl.1 | |- ( ph -> X e. Fin ) |
|
2 | ovncl.2 | |- ( ph -> A C_ ( RR ^m X ) ) |
|
3 | 1 | ovnf | |- ( ph -> ( voln* ` X ) : ~P ( RR ^m X ) --> ( 0 [,] +oo ) ) |
4 | ovexd | |- ( ph -> ( RR ^m X ) e. _V ) |
|
5 | 4 2 | ssexd | |- ( ph -> A e. _V ) |
6 | elpwg | |- ( A e. _V -> ( A e. ~P ( RR ^m X ) <-> A C_ ( RR ^m X ) ) ) |
|
7 | 5 6 | syl | |- ( ph -> ( A e. ~P ( RR ^m X ) <-> A C_ ( RR ^m X ) ) ) |
8 | 2 7 | mpbird | |- ( ph -> A e. ~P ( RR ^m X ) ) |
9 | 3 8 | ffvelrnd | |- ( ph -> ( ( voln* ` X ) ` A ) e. ( 0 [,] +oo ) ) |