Metamath Proof Explorer


Theorem ovncl

Description: The Lebesgue outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovncl.1
|- ( ph -> X e. Fin )
ovncl.2
|- ( ph -> A C_ ( RR ^m X ) )
Assertion ovncl
|- ( ph -> ( ( voln* ` X ) ` A ) e. ( 0 [,] +oo ) )

Proof

Step Hyp Ref Expression
1 ovncl.1
 |-  ( ph -> X e. Fin )
2 ovncl.2
 |-  ( ph -> A C_ ( RR ^m X ) )
3 1 ovnf
 |-  ( ph -> ( voln* ` X ) : ~P ( RR ^m X ) --> ( 0 [,] +oo ) )
4 ovexd
 |-  ( ph -> ( RR ^m X ) e. _V )
5 4 2 ssexd
 |-  ( ph -> A e. _V )
6 elpwg
 |-  ( A e. _V -> ( A e. ~P ( RR ^m X ) <-> A C_ ( RR ^m X ) ) )
7 5 6 syl
 |-  ( ph -> ( A e. ~P ( RR ^m X ) <-> A C_ ( RR ^m X ) ) )
8 2 7 mpbird
 |-  ( ph -> A e. ~P ( RR ^m X ) )
9 3 8 ffvelrnd
 |-  ( ph -> ( ( voln* ` X ) ` A ) e. ( 0 [,] +oo ) )