Description: The Lebesgue outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | ovncl.1 | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
ovncl.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) | ||
Assertion | ovncl | ⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ovncl.1 | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
2 | ovncl.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) | |
3 | 1 | ovnf | ⊢ ( 𝜑 → ( voln* ‘ 𝑋 ) : 𝒫 ( ℝ ↑m 𝑋 ) ⟶ ( 0 [,] +∞ ) ) |
4 | ovexd | ⊢ ( 𝜑 → ( ℝ ↑m 𝑋 ) ∈ V ) | |
5 | 4 2 | ssexd | ⊢ ( 𝜑 → 𝐴 ∈ V ) |
6 | elpwg | ⊢ ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↔ 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) ) | |
7 | 5 6 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↔ 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) ) |
8 | 2 7 | mpbird | ⊢ ( 𝜑 → 𝐴 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
9 | 3 8 | ffvelrnd | ⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |