Metamath Proof Explorer


Theorem ovncl

Description: The Lebesgue outer measure of a set is a nonnegative extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovncl.1 ( 𝜑𝑋 ∈ Fin )
ovncl.2 ( 𝜑𝐴 ⊆ ( ℝ ↑m 𝑋 ) )
Assertion ovncl ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) )

Proof

Step Hyp Ref Expression
1 ovncl.1 ( 𝜑𝑋 ∈ Fin )
2 ovncl.2 ( 𝜑𝐴 ⊆ ( ℝ ↑m 𝑋 ) )
3 1 ovnf ( 𝜑 → ( voln* ‘ 𝑋 ) : 𝒫 ( ℝ ↑m 𝑋 ) ⟶ ( 0 [,] +∞ ) )
4 ovexd ( 𝜑 → ( ℝ ↑m 𝑋 ) ∈ V )
5 4 2 ssexd ( 𝜑𝐴 ∈ V )
6 elpwg ( 𝐴 ∈ V → ( 𝐴 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↔ 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) )
7 5 6 syl ( 𝜑 → ( 𝐴 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↔ 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) )
8 2 7 mpbird ( 𝜑𝐴 ∈ 𝒫 ( ℝ ↑m 𝑋 ) )
9 3 8 ffvelrnd ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) )