Step |
Hyp |
Ref |
Expression |
1 |
|
tru |
⊢ ⊤ |
2 |
|
0fin |
⊢ ∅ ∈ Fin |
3 |
2
|
a1i |
⊢ ( ⊤ → ∅ ∈ Fin ) |
4 |
3
|
ovnf |
⊢ ( ⊤ → ( voln* ‘ ∅ ) : 𝒫 ( ℝ ↑m ∅ ) ⟶ ( 0 [,] +∞ ) ) |
5 |
4
|
feqmptd |
⊢ ( ⊤ → ( voln* ‘ ∅ ) = ( 𝑥 ∈ 𝒫 ( ℝ ↑m ∅ ) ↦ ( ( voln* ‘ ∅ ) ‘ 𝑥 ) ) ) |
6 |
1 5
|
ax-mp |
⊢ ( voln* ‘ ∅ ) = ( 𝑥 ∈ 𝒫 ( ℝ ↑m ∅ ) ↦ ( ( voln* ‘ ∅ ) ‘ 𝑥 ) ) |
7 |
|
reex |
⊢ ℝ ∈ V |
8 |
|
mapdm0 |
⊢ ( ℝ ∈ V → ( ℝ ↑m ∅ ) = { ∅ } ) |
9 |
7 8
|
ax-mp |
⊢ ( ℝ ↑m ∅ ) = { ∅ } |
10 |
9
|
pweqi |
⊢ 𝒫 ( ℝ ↑m ∅ ) = 𝒫 { ∅ } |
11 |
|
mpteq1 |
⊢ ( 𝒫 ( ℝ ↑m ∅ ) = 𝒫 { ∅ } → ( 𝑥 ∈ 𝒫 ( ℝ ↑m ∅ ) ↦ ( ( voln* ‘ ∅ ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝒫 { ∅ } ↦ ( ( voln* ‘ ∅ ) ‘ 𝑥 ) ) ) |
12 |
10 11
|
ax-mp |
⊢ ( 𝑥 ∈ 𝒫 ( ℝ ↑m ∅ ) ↦ ( ( voln* ‘ ∅ ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝒫 { ∅ } ↦ ( ( voln* ‘ ∅ ) ‘ 𝑥 ) ) |
13 |
|
elpwi |
⊢ ( 𝑥 ∈ 𝒫 { ∅ } → 𝑥 ⊆ { ∅ } ) |
14 |
9
|
eqcomi |
⊢ { ∅ } = ( ℝ ↑m ∅ ) |
15 |
14
|
a1i |
⊢ ( 𝑥 ∈ 𝒫 { ∅ } → { ∅ } = ( ℝ ↑m ∅ ) ) |
16 |
13 15
|
sseqtrd |
⊢ ( 𝑥 ∈ 𝒫 { ∅ } → 𝑥 ⊆ ( ℝ ↑m ∅ ) ) |
17 |
16
|
ovn0val |
⊢ ( 𝑥 ∈ 𝒫 { ∅ } → ( ( voln* ‘ ∅ ) ‘ 𝑥 ) = 0 ) |
18 |
17
|
mpteq2ia |
⊢ ( 𝑥 ∈ 𝒫 { ∅ } ↦ ( ( voln* ‘ ∅ ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝒫 { ∅ } ↦ 0 ) |
19 |
6 12 18
|
3eqtri |
⊢ ( voln* ‘ ∅ ) = ( 𝑥 ∈ 𝒫 { ∅ } ↦ 0 ) |