Metamath Proof Explorer


Theorem ovn02

Description: For the zero-dimensional space, voln* assigns zero to every subset. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion ovn02 ( voln* ‘ ∅ ) = ( 𝑥 ∈ 𝒫 { ∅ } ↦ 0 )

Proof

Step Hyp Ref Expression
1 tru
2 0fin ∅ ∈ Fin
3 2 a1i ( ⊤ → ∅ ∈ Fin )
4 3 ovnf ( ⊤ → ( voln* ‘ ∅ ) : 𝒫 ( ℝ ↑m ∅ ) ⟶ ( 0 [,] +∞ ) )
5 4 feqmptd ( ⊤ → ( voln* ‘ ∅ ) = ( 𝑥 ∈ 𝒫 ( ℝ ↑m ∅ ) ↦ ( ( voln* ‘ ∅ ) ‘ 𝑥 ) ) )
6 1 5 ax-mp ( voln* ‘ ∅ ) = ( 𝑥 ∈ 𝒫 ( ℝ ↑m ∅ ) ↦ ( ( voln* ‘ ∅ ) ‘ 𝑥 ) )
7 reex ℝ ∈ V
8 mapdm0 ( ℝ ∈ V → ( ℝ ↑m ∅ ) = { ∅ } )
9 7 8 ax-mp ( ℝ ↑m ∅ ) = { ∅ }
10 9 pweqi 𝒫 ( ℝ ↑m ∅ ) = 𝒫 { ∅ }
11 mpteq1 ( 𝒫 ( ℝ ↑m ∅ ) = 𝒫 { ∅ } → ( 𝑥 ∈ 𝒫 ( ℝ ↑m ∅ ) ↦ ( ( voln* ‘ ∅ ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝒫 { ∅ } ↦ ( ( voln* ‘ ∅ ) ‘ 𝑥 ) ) )
12 10 11 ax-mp ( 𝑥 ∈ 𝒫 ( ℝ ↑m ∅ ) ↦ ( ( voln* ‘ ∅ ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝒫 { ∅ } ↦ ( ( voln* ‘ ∅ ) ‘ 𝑥 ) )
13 elpwi ( 𝑥 ∈ 𝒫 { ∅ } → 𝑥 ⊆ { ∅ } )
14 9 eqcomi { ∅ } = ( ℝ ↑m ∅ )
15 14 a1i ( 𝑥 ∈ 𝒫 { ∅ } → { ∅ } = ( ℝ ↑m ∅ ) )
16 13 15 sseqtrd ( 𝑥 ∈ 𝒫 { ∅ } → 𝑥 ⊆ ( ℝ ↑m ∅ ) )
17 16 ovn0val ( 𝑥 ∈ 𝒫 { ∅ } → ( ( voln* ‘ ∅ ) ‘ 𝑥 ) = 0 )
18 17 mpteq2ia ( 𝑥 ∈ 𝒫 { ∅ } ↦ ( ( voln* ‘ ∅ ) ‘ 𝑥 ) ) = ( 𝑥 ∈ 𝒫 { ∅ } ↦ 0 )
19 6 12 18 3eqtri ( voln* ‘ ∅ ) = ( 𝑥 ∈ 𝒫 { ∅ } ↦ 0 )