Step |
Hyp |
Ref |
Expression |
1 |
|
tru |
|- T. |
2 |
|
0fin |
|- (/) e. Fin |
3 |
2
|
a1i |
|- ( T. -> (/) e. Fin ) |
4 |
3
|
ovnf |
|- ( T. -> ( voln* ` (/) ) : ~P ( RR ^m (/) ) --> ( 0 [,] +oo ) ) |
5 |
4
|
feqmptd |
|- ( T. -> ( voln* ` (/) ) = ( x e. ~P ( RR ^m (/) ) |-> ( ( voln* ` (/) ) ` x ) ) ) |
6 |
1 5
|
ax-mp |
|- ( voln* ` (/) ) = ( x e. ~P ( RR ^m (/) ) |-> ( ( voln* ` (/) ) ` x ) ) |
7 |
|
reex |
|- RR e. _V |
8 |
|
mapdm0 |
|- ( RR e. _V -> ( RR ^m (/) ) = { (/) } ) |
9 |
7 8
|
ax-mp |
|- ( RR ^m (/) ) = { (/) } |
10 |
9
|
pweqi |
|- ~P ( RR ^m (/) ) = ~P { (/) } |
11 |
|
mpteq1 |
|- ( ~P ( RR ^m (/) ) = ~P { (/) } -> ( x e. ~P ( RR ^m (/) ) |-> ( ( voln* ` (/) ) ` x ) ) = ( x e. ~P { (/) } |-> ( ( voln* ` (/) ) ` x ) ) ) |
12 |
10 11
|
ax-mp |
|- ( x e. ~P ( RR ^m (/) ) |-> ( ( voln* ` (/) ) ` x ) ) = ( x e. ~P { (/) } |-> ( ( voln* ` (/) ) ` x ) ) |
13 |
|
elpwi |
|- ( x e. ~P { (/) } -> x C_ { (/) } ) |
14 |
9
|
eqcomi |
|- { (/) } = ( RR ^m (/) ) |
15 |
14
|
a1i |
|- ( x e. ~P { (/) } -> { (/) } = ( RR ^m (/) ) ) |
16 |
13 15
|
sseqtrd |
|- ( x e. ~P { (/) } -> x C_ ( RR ^m (/) ) ) |
17 |
16
|
ovn0val |
|- ( x e. ~P { (/) } -> ( ( voln* ` (/) ) ` x ) = 0 ) |
18 |
17
|
mpteq2ia |
|- ( x e. ~P { (/) } |-> ( ( voln* ` (/) ) ` x ) ) = ( x e. ~P { (/) } |-> 0 ) |
19 |
6 12 18
|
3eqtri |
|- ( voln* ` (/) ) = ( x e. ~P { (/) } |-> 0 ) |