Metamath Proof Explorer


Theorem ovn02

Description: For the zero-dimensional space, voln* assigns zero to every subset. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion ovn02
|- ( voln* ` (/) ) = ( x e. ~P { (/) } |-> 0 )

Proof

Step Hyp Ref Expression
1 tru
 |-  T.
2 0fin
 |-  (/) e. Fin
3 2 a1i
 |-  ( T. -> (/) e. Fin )
4 3 ovnf
 |-  ( T. -> ( voln* ` (/) ) : ~P ( RR ^m (/) ) --> ( 0 [,] +oo ) )
5 4 feqmptd
 |-  ( T. -> ( voln* ` (/) ) = ( x e. ~P ( RR ^m (/) ) |-> ( ( voln* ` (/) ) ` x ) ) )
6 1 5 ax-mp
 |-  ( voln* ` (/) ) = ( x e. ~P ( RR ^m (/) ) |-> ( ( voln* ` (/) ) ` x ) )
7 reex
 |-  RR e. _V
8 mapdm0
 |-  ( RR e. _V -> ( RR ^m (/) ) = { (/) } )
9 7 8 ax-mp
 |-  ( RR ^m (/) ) = { (/) }
10 9 pweqi
 |-  ~P ( RR ^m (/) ) = ~P { (/) }
11 mpteq1
 |-  ( ~P ( RR ^m (/) ) = ~P { (/) } -> ( x e. ~P ( RR ^m (/) ) |-> ( ( voln* ` (/) ) ` x ) ) = ( x e. ~P { (/) } |-> ( ( voln* ` (/) ) ` x ) ) )
12 10 11 ax-mp
 |-  ( x e. ~P ( RR ^m (/) ) |-> ( ( voln* ` (/) ) ` x ) ) = ( x e. ~P { (/) } |-> ( ( voln* ` (/) ) ` x ) )
13 elpwi
 |-  ( x e. ~P { (/) } -> x C_ { (/) } )
14 9 eqcomi
 |-  { (/) } = ( RR ^m (/) )
15 14 a1i
 |-  ( x e. ~P { (/) } -> { (/) } = ( RR ^m (/) ) )
16 13 15 sseqtrd
 |-  ( x e. ~P { (/) } -> x C_ ( RR ^m (/) ) )
17 16 ovn0val
 |-  ( x e. ~P { (/) } -> ( ( voln* ` (/) ) ` x ) = 0 )
18 17 mpteq2ia
 |-  ( x e. ~P { (/) } |-> ( ( voln* ` (/) ) ` x ) ) = ( x e. ~P { (/) } |-> 0 )
19 6 12 18 3eqtri
 |-  ( voln* ` (/) ) = ( x e. ~P { (/) } |-> 0 )