Metamath Proof Explorer


Theorem ovn02

Description: For the zero-dimensional space, voln* assigns zero to every subset. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Assertion ovn02 voln* = x 𝒫 0

Proof

Step Hyp Ref Expression
1 tru
2 0fin Fin
3 2 a1i Fin
4 3 ovnf voln* : 𝒫 0 +∞
5 4 feqmptd voln* = x 𝒫 voln* x
6 1 5 ax-mp voln* = x 𝒫 voln* x
7 reex V
8 mapdm0 V =
9 7 8 ax-mp =
10 9 pweqi 𝒫 = 𝒫
11 mpteq1 𝒫 = 𝒫 x 𝒫 voln* x = x 𝒫 voln* x
12 10 11 ax-mp x 𝒫 voln* x = x 𝒫 voln* x
13 elpwi x 𝒫 x
14 9 eqcomi =
15 14 a1i x 𝒫 =
16 13 15 sseqtrd x 𝒫 x
17 16 ovn0val x 𝒫 voln* x = 0
18 17 mpteq2ia x 𝒫 voln* x = x 𝒫 0
19 6 12 18 3eqtri voln* = x 𝒫 0