Description: The Lebesgue outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ovnxrcl.1 | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
| ovnxrcl.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) | ||
| Assertion | ovnxrcl | ⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ∈ ℝ* ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ovnxrcl.1 | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
| 2 | ovnxrcl.2 | ⊢ ( 𝜑 → 𝐴 ⊆ ( ℝ ↑m 𝑋 ) ) | |
| 3 | iccssxr | ⊢ ( 0 [,] +∞ ) ⊆ ℝ* | |
| 4 | 1 2 | ovncl | ⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) ) |
| 5 | 3 4 | sselid | ⊢ ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ∈ ℝ* ) |