Metamath Proof Explorer


Theorem ovnxrcl

Description: The Lebesgue outer measure of a set is an extended real. (Contributed by Glauco Siliprandi, 11-Oct-2020)

Ref Expression
Hypotheses ovnxrcl.1 ( 𝜑𝑋 ∈ Fin )
ovnxrcl.2 ( 𝜑𝐴 ⊆ ( ℝ ↑m 𝑋 ) )
Assertion ovnxrcl ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ∈ ℝ* )

Proof

Step Hyp Ref Expression
1 ovnxrcl.1 ( 𝜑𝑋 ∈ Fin )
2 ovnxrcl.2 ( 𝜑𝐴 ⊆ ( ℝ ↑m 𝑋 ) )
3 iccssxr ( 0 [,] +∞ ) ⊆ ℝ*
4 1 2 ovncl ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ∈ ( 0 [,] +∞ ) )
5 3 4 sselid ( 𝜑 → ( ( voln* ‘ 𝑋 ) ‘ 𝐴 ) ∈ ℝ* )