Step |
Hyp |
Ref |
Expression |
1 |
|
ovolval3.a |
|- ( ph -> A C_ RR ) |
2 |
|
ovolval3.m |
|- M = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) } |
3 |
|
eqid |
|- { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( abs o. - ) o. f ) ) ) } = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( abs o. - ) o. f ) ) ) } |
4 |
1 3
|
ovolval2 |
|- ( ph -> ( vol* ` A ) = inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( abs o. - ) o. f ) ) ) } , RR* , < ) ) |
5 |
|
reex |
|- RR e. _V |
6 |
5 5
|
xpex |
|- ( RR X. RR ) e. _V |
7 |
|
inss2 |
|- ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) |
8 |
|
mapss |
|- ( ( ( RR X. RR ) e. _V /\ ( <_ i^i ( RR X. RR ) ) C_ ( RR X. RR ) ) -> ( ( <_ i^i ( RR X. RR ) ) ^m NN ) C_ ( ( RR X. RR ) ^m NN ) ) |
9 |
6 7 8
|
mp2an |
|- ( ( <_ i^i ( RR X. RR ) ) ^m NN ) C_ ( ( RR X. RR ) ^m NN ) |
10 |
9
|
sseli |
|- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> f e. ( ( RR X. RR ) ^m NN ) ) |
11 |
|
elmapi |
|- ( f e. ( ( RR X. RR ) ^m NN ) -> f : NN --> ( RR X. RR ) ) |
12 |
10 11
|
syl |
|- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> f : NN --> ( RR X. RR ) ) |
13 |
12
|
ffvelrnda |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( f ` n ) e. ( RR X. RR ) ) |
14 |
|
1st2nd2 |
|- ( ( f ` n ) e. ( RR X. RR ) -> ( f ` n ) = <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. ) |
15 |
13 14
|
syl |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( f ` n ) = <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. ) |
16 |
15
|
fveq2d |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( (,) ` ( f ` n ) ) = ( (,) ` <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. ) ) |
17 |
|
df-ov |
|- ( ( 1st ` ( f ` n ) ) (,) ( 2nd ` ( f ` n ) ) ) = ( (,) ` <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. ) |
18 |
17
|
eqcomi |
|- ( (,) ` <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. ) = ( ( 1st ` ( f ` n ) ) (,) ( 2nd ` ( f ` n ) ) ) |
19 |
18
|
a1i |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( (,) ` <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. ) = ( ( 1st ` ( f ` n ) ) (,) ( 2nd ` ( f ` n ) ) ) ) |
20 |
16 19
|
eqtrd |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( (,) ` ( f ` n ) ) = ( ( 1st ` ( f ` n ) ) (,) ( 2nd ` ( f ` n ) ) ) ) |
21 |
20
|
fveq2d |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( vol ` ( (,) ` ( f ` n ) ) ) = ( vol ` ( ( 1st ` ( f ` n ) ) (,) ( 2nd ` ( f ` n ) ) ) ) ) |
22 |
|
xp1st |
|- ( ( f ` n ) e. ( RR X. RR ) -> ( 1st ` ( f ` n ) ) e. RR ) |
23 |
13 22
|
syl |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( 1st ` ( f ` n ) ) e. RR ) |
24 |
|
xp2nd |
|- ( ( f ` n ) e. ( RR X. RR ) -> ( 2nd ` ( f ` n ) ) e. RR ) |
25 |
13 24
|
syl |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( 2nd ` ( f ` n ) ) e. RR ) |
26 |
|
elmapi |
|- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> f : NN --> ( <_ i^i ( RR X. RR ) ) ) |
27 |
26
|
adantr |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> f : NN --> ( <_ i^i ( RR X. RR ) ) ) |
28 |
|
simpr |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> n e. NN ) |
29 |
|
ovolfcl |
|- ( ( f : NN --> ( <_ i^i ( RR X. RR ) ) /\ n e. NN ) -> ( ( 1st ` ( f ` n ) ) e. RR /\ ( 2nd ` ( f ` n ) ) e. RR /\ ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) ) |
30 |
27 28 29
|
syl2anc |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( ( 1st ` ( f ` n ) ) e. RR /\ ( 2nd ` ( f ` n ) ) e. RR /\ ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) ) |
31 |
30
|
simp3d |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) |
32 |
|
volioo |
|- ( ( ( 1st ` ( f ` n ) ) e. RR /\ ( 2nd ` ( f ` n ) ) e. RR /\ ( 1st ` ( f ` n ) ) <_ ( 2nd ` ( f ` n ) ) ) -> ( vol ` ( ( 1st ` ( f ` n ) ) (,) ( 2nd ` ( f ` n ) ) ) ) = ( ( 2nd ` ( f ` n ) ) - ( 1st ` ( f ` n ) ) ) ) |
33 |
23 25 31 32
|
syl3anc |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( vol ` ( ( 1st ` ( f ` n ) ) (,) ( 2nd ` ( f ` n ) ) ) ) = ( ( 2nd ` ( f ` n ) ) - ( 1st ` ( f ` n ) ) ) ) |
34 |
21 33
|
eqtrd |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( vol ` ( (,) ` ( f ` n ) ) ) = ( ( 2nd ` ( f ` n ) ) - ( 1st ` ( f ` n ) ) ) ) |
35 |
|
ioof |
|- (,) : ( RR* X. RR* ) --> ~P RR |
36 |
|
ffun |
|- ( (,) : ( RR* X. RR* ) --> ~P RR -> Fun (,) ) |
37 |
35 36
|
ax-mp |
|- Fun (,) |
38 |
37
|
a1i |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> Fun (,) ) |
39 |
|
rexpssxrxp |
|- ( RR X. RR ) C_ ( RR* X. RR* ) |
40 |
39 13
|
sselid |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( f ` n ) e. ( RR* X. RR* ) ) |
41 |
35
|
fdmi |
|- dom (,) = ( RR* X. RR* ) |
42 |
41
|
eqcomi |
|- ( RR* X. RR* ) = dom (,) |
43 |
42
|
a1i |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( RR* X. RR* ) = dom (,) ) |
44 |
40 43
|
eleqtrd |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( f ` n ) e. dom (,) ) |
45 |
|
fvco |
|- ( ( Fun (,) /\ ( f ` n ) e. dom (,) ) -> ( ( vol o. (,) ) ` ( f ` n ) ) = ( vol ` ( (,) ` ( f ` n ) ) ) ) |
46 |
38 44 45
|
syl2anc |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( ( vol o. (,) ) ` ( f ` n ) ) = ( vol ` ( (,) ` ( f ` n ) ) ) ) |
47 |
15
|
fveq2d |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( ( abs o. - ) ` ( f ` n ) ) = ( ( abs o. - ) ` <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. ) ) |
48 |
|
df-ov |
|- ( ( 1st ` ( f ` n ) ) ( abs o. - ) ( 2nd ` ( f ` n ) ) ) = ( ( abs o. - ) ` <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. ) |
49 |
48
|
eqcomi |
|- ( ( abs o. - ) ` <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. ) = ( ( 1st ` ( f ` n ) ) ( abs o. - ) ( 2nd ` ( f ` n ) ) ) |
50 |
49
|
a1i |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( ( abs o. - ) ` <. ( 1st ` ( f ` n ) ) , ( 2nd ` ( f ` n ) ) >. ) = ( ( 1st ` ( f ` n ) ) ( abs o. - ) ( 2nd ` ( f ` n ) ) ) ) |
51 |
23
|
recnd |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( 1st ` ( f ` n ) ) e. CC ) |
52 |
25
|
recnd |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( 2nd ` ( f ` n ) ) e. CC ) |
53 |
|
eqid |
|- ( abs o. - ) = ( abs o. - ) |
54 |
53
|
cnmetdval |
|- ( ( ( 1st ` ( f ` n ) ) e. CC /\ ( 2nd ` ( f ` n ) ) e. CC ) -> ( ( 1st ` ( f ` n ) ) ( abs o. - ) ( 2nd ` ( f ` n ) ) ) = ( abs ` ( ( 1st ` ( f ` n ) ) - ( 2nd ` ( f ` n ) ) ) ) ) |
55 |
51 52 54
|
syl2anc |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( ( 1st ` ( f ` n ) ) ( abs o. - ) ( 2nd ` ( f ` n ) ) ) = ( abs ` ( ( 1st ` ( f ` n ) ) - ( 2nd ` ( f ` n ) ) ) ) ) |
56 |
|
abssub |
|- ( ( ( 1st ` ( f ` n ) ) e. CC /\ ( 2nd ` ( f ` n ) ) e. CC ) -> ( abs ` ( ( 1st ` ( f ` n ) ) - ( 2nd ` ( f ` n ) ) ) ) = ( abs ` ( ( 2nd ` ( f ` n ) ) - ( 1st ` ( f ` n ) ) ) ) ) |
57 |
51 52 56
|
syl2anc |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( abs ` ( ( 1st ` ( f ` n ) ) - ( 2nd ` ( f ` n ) ) ) ) = ( abs ` ( ( 2nd ` ( f ` n ) ) - ( 1st ` ( f ` n ) ) ) ) ) |
58 |
23 25 31
|
abssubge0d |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( abs ` ( ( 2nd ` ( f ` n ) ) - ( 1st ` ( f ` n ) ) ) ) = ( ( 2nd ` ( f ` n ) ) - ( 1st ` ( f ` n ) ) ) ) |
59 |
55 57 58
|
3eqtrd |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( ( 1st ` ( f ` n ) ) ( abs o. - ) ( 2nd ` ( f ` n ) ) ) = ( ( 2nd ` ( f ` n ) ) - ( 1st ` ( f ` n ) ) ) ) |
60 |
47 50 59
|
3eqtrd |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( ( abs o. - ) ` ( f ` n ) ) = ( ( 2nd ` ( f ` n ) ) - ( 1st ` ( f ` n ) ) ) ) |
61 |
34 46 60
|
3eqtr4d |
|- ( ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) /\ n e. NN ) -> ( ( vol o. (,) ) ` ( f ` n ) ) = ( ( abs o. - ) ` ( f ` n ) ) ) |
62 |
61
|
mpteq2dva |
|- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> ( n e. NN |-> ( ( vol o. (,) ) ` ( f ` n ) ) ) = ( n e. NN |-> ( ( abs o. - ) ` ( f ` n ) ) ) ) |
63 |
|
volioof |
|- ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) |
64 |
63
|
a1i |
|- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) ) |
65 |
39
|
a1i |
|- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> ( RR X. RR ) C_ ( RR* X. RR* ) ) |
66 |
12 65
|
fssd |
|- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> f : NN --> ( RR* X. RR* ) ) |
67 |
|
fcompt |
|- ( ( ( vol o. (,) ) : ( RR* X. RR* ) --> ( 0 [,] +oo ) /\ f : NN --> ( RR* X. RR* ) ) -> ( ( vol o. (,) ) o. f ) = ( n e. NN |-> ( ( vol o. (,) ) ` ( f ` n ) ) ) ) |
68 |
64 66 67
|
syl2anc |
|- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> ( ( vol o. (,) ) o. f ) = ( n e. NN |-> ( ( vol o. (,) ) ` ( f ` n ) ) ) ) |
69 |
|
absf |
|- abs : CC --> RR |
70 |
|
subf |
|- - : ( CC X. CC ) --> CC |
71 |
|
fco |
|- ( ( abs : CC --> RR /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
72 |
69 70 71
|
mp2an |
|- ( abs o. - ) : ( CC X. CC ) --> RR |
73 |
72
|
a1i |
|- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
74 |
|
rr2sscn2 |
|- ( RR X. RR ) C_ ( CC X. CC ) |
75 |
74
|
a1i |
|- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> ( RR X. RR ) C_ ( CC X. CC ) ) |
76 |
12 75
|
fssd |
|- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> f : NN --> ( CC X. CC ) ) |
77 |
|
fcompt |
|- ( ( ( abs o. - ) : ( CC X. CC ) --> RR /\ f : NN --> ( CC X. CC ) ) -> ( ( abs o. - ) o. f ) = ( n e. NN |-> ( ( abs o. - ) ` ( f ` n ) ) ) ) |
78 |
73 76 77
|
syl2anc |
|- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> ( ( abs o. - ) o. f ) = ( n e. NN |-> ( ( abs o. - ) ` ( f ` n ) ) ) ) |
79 |
62 68 78
|
3eqtr4d |
|- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> ( ( vol o. (,) ) o. f ) = ( ( abs o. - ) o. f ) ) |
80 |
79
|
fveq2d |
|- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> ( sum^ ` ( ( vol o. (,) ) o. f ) ) = ( sum^ ` ( ( abs o. - ) o. f ) ) ) |
81 |
80
|
eqeq2d |
|- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> ( y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) <-> y = ( sum^ ` ( ( abs o. - ) o. f ) ) ) ) |
82 |
81
|
anbi2d |
|- ( f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) -> ( ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) <-> ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( abs o. - ) o. f ) ) ) ) ) |
83 |
82
|
rexbiia |
|- ( E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) <-> E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( abs o. - ) o. f ) ) ) ) |
84 |
83
|
rabbii |
|- { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( vol o. (,) ) o. f ) ) ) } = { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( abs o. - ) o. f ) ) ) } |
85 |
2 84
|
eqtr2i |
|- { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( abs o. - ) o. f ) ) ) } = M |
86 |
85
|
infeq1i |
|- inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( abs o. - ) o. f ) ) ) } , RR* , < ) = inf ( M , RR* , < ) |
87 |
86
|
a1i |
|- ( ph -> inf ( { y e. RR* | E. f e. ( ( <_ i^i ( RR X. RR ) ) ^m NN ) ( A C_ U. ran ( (,) o. f ) /\ y = ( sum^ ` ( ( abs o. - ) o. f ) ) ) } , RR* , < ) = inf ( M , RR* , < ) ) |
88 |
4 87
|
eqtrd |
|- ( ph -> ( vol* ` A ) = inf ( M , RR* , < ) ) |