Metamath Proof Explorer


Theorem ovolval3

Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using sum^ and vol o. (,) . See ovolval and ovolval2 for alternative expressions. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval3.a φA
ovolval3.m M=y*|f2Aran.fy=sum^vol.f
Assertion ovolval3 φvol*A=supM*<

Proof

Step Hyp Ref Expression
1 ovolval3.a φA
2 ovolval3.m M=y*|f2Aran.fy=sum^vol.f
3 eqid y*|f2Aran.fy=sum^absf=y*|f2Aran.fy=sum^absf
4 1 3 ovolval2 φvol*A=supy*|f2Aran.fy=sum^absf*<
5 reex V
6 5 5 xpex 2V
7 inss2 22
8 mapss 2V2222
9 6 7 8 mp2an 22
10 9 sseli f2f2
11 elmapi f2f:2
12 10 11 syl f2f:2
13 12 ffvelcdmda f2nfn2
14 1st2nd2 fn2fn=1stfn2ndfn
15 13 14 syl f2nfn=1stfn2ndfn
16 15 fveq2d f2n.fn=.1stfn2ndfn
17 df-ov 1stfn2ndfn=.1stfn2ndfn
18 17 eqcomi .1stfn2ndfn=1stfn2ndfn
19 18 a1i f2n.1stfn2ndfn=1stfn2ndfn
20 16 19 eqtrd f2n.fn=1stfn2ndfn
21 20 fveq2d f2nvol.fn=vol1stfn2ndfn
22 xp1st fn21stfn
23 13 22 syl f2n1stfn
24 xp2nd fn22ndfn
25 13 24 syl f2n2ndfn
26 elmapi f2f:2
27 26 adantr f2nf:2
28 simpr f2nn
29 ovolfcl f:2n1stfn2ndfn1stfn2ndfn
30 27 28 29 syl2anc f2n1stfn2ndfn1stfn2ndfn
31 30 simp3d f2n1stfn2ndfn
32 volioo 1stfn2ndfn1stfn2ndfnvol1stfn2ndfn=2ndfn1stfn
33 23 25 31 32 syl3anc f2nvol1stfn2ndfn=2ndfn1stfn
34 21 33 eqtrd f2nvol.fn=2ndfn1stfn
35 ioof .:*×*𝒫
36 ffun .:*×*𝒫Fun.
37 35 36 ax-mp Fun.
38 37 a1i f2nFun.
39 rexpssxrxp 2*×*
40 39 13 sselid f2nfn*×*
41 35 fdmi dom.=*×*
42 41 eqcomi *×*=dom.
43 42 a1i f2n*×*=dom.
44 40 43 eleqtrd f2nfndom.
45 fvco Fun.fndom.vol.fn=vol.fn
46 38 44 45 syl2anc f2nvol.fn=vol.fn
47 15 fveq2d f2nabsfn=abs1stfn2ndfn
48 df-ov 1stfnabs2ndfn=abs1stfn2ndfn
49 48 eqcomi abs1stfn2ndfn=1stfnabs2ndfn
50 49 a1i f2nabs1stfn2ndfn=1stfnabs2ndfn
51 23 recnd f2n1stfn
52 25 recnd f2n2ndfn
53 eqid abs=abs
54 53 cnmetdval 1stfn2ndfn1stfnabs2ndfn=1stfn2ndfn
55 51 52 54 syl2anc f2n1stfnabs2ndfn=1stfn2ndfn
56 abssub 1stfn2ndfn1stfn2ndfn=2ndfn1stfn
57 51 52 56 syl2anc f2n1stfn2ndfn=2ndfn1stfn
58 23 25 31 abssubge0d f2n2ndfn1stfn=2ndfn1stfn
59 55 57 58 3eqtrd f2n1stfnabs2ndfn=2ndfn1stfn
60 47 50 59 3eqtrd f2nabsfn=2ndfn1stfn
61 34 46 60 3eqtr4d f2nvol.fn=absfn
62 61 mpteq2dva f2nvol.fn=nabsfn
63 volioof vol.:*×*0+∞
64 63 a1i f2vol.:*×*0+∞
65 39 a1i f22*×*
66 12 65 fssd f2f:*×*
67 fcompt vol.:*×*0+∞f:*×*vol.f=nvol.fn
68 64 66 67 syl2anc f2vol.f=nvol.fn
69 absf abs:
70 subf :×
71 fco abs::×abs:×
72 69 70 71 mp2an abs:×
73 72 a1i f2abs:×
74 rr2sscn2 2×
75 74 a1i f22×
76 12 75 fssd f2f:×
77 fcompt abs:×f:×absf=nabsfn
78 73 76 77 syl2anc f2absf=nabsfn
79 62 68 78 3eqtr4d f2vol.f=absf
80 79 fveq2d f2sum^vol.f=sum^absf
81 80 eqeq2d f2y=sum^vol.fy=sum^absf
82 81 anbi2d f2Aran.fy=sum^vol.fAran.fy=sum^absf
83 82 rexbiia f2Aran.fy=sum^vol.ff2Aran.fy=sum^absf
84 83 rabbii y*|f2Aran.fy=sum^vol.f=y*|f2Aran.fy=sum^absf
85 2 84 eqtr2i y*|f2Aran.fy=sum^absf=M
86 85 infeq1i supy*|f2Aran.fy=sum^absf*<=supM*<
87 86 a1i φsupy*|f2Aran.fy=sum^absf*<=supM*<
88 4 87 eqtrd φvol*A=supM*<