Metamath Proof Explorer


Theorem ovolval3

Description: The value of the Lebesgue outer measure for subsets of the reals, expressed using sum^ and vol o. (,) . See ovolval and ovolval2 for alternative expressions. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovolval3.a φ A
ovolval3.m M = y * | f 2 A ran . f y = sum^ vol . f
Assertion ovolval3 φ vol * A = sup M * <

Proof

Step Hyp Ref Expression
1 ovolval3.a φ A
2 ovolval3.m M = y * | f 2 A ran . f y = sum^ vol . f
3 eqid y * | f 2 A ran . f y = sum^ abs f = y * | f 2 A ran . f y = sum^ abs f
4 1 3 ovolval2 φ vol * A = sup y * | f 2 A ran . f y = sum^ abs f * <
5 reex V
6 5 5 xpex 2 V
7 inss2 2 2
8 mapss 2 V 2 2 2 2
9 6 7 8 mp2an 2 2
10 9 sseli f 2 f 2
11 elmapi f 2 f : 2
12 10 11 syl f 2 f : 2
13 12 ffvelrnda f 2 n f n 2
14 1st2nd2 f n 2 f n = 1 st f n 2 nd f n
15 13 14 syl f 2 n f n = 1 st f n 2 nd f n
16 15 fveq2d f 2 n . f n = . 1 st f n 2 nd f n
17 df-ov 1 st f n 2 nd f n = . 1 st f n 2 nd f n
18 17 eqcomi . 1 st f n 2 nd f n = 1 st f n 2 nd f n
19 18 a1i f 2 n . 1 st f n 2 nd f n = 1 st f n 2 nd f n
20 16 19 eqtrd f 2 n . f n = 1 st f n 2 nd f n
21 20 fveq2d f 2 n vol . f n = vol 1 st f n 2 nd f n
22 xp1st f n 2 1 st f n
23 13 22 syl f 2 n 1 st f n
24 xp2nd f n 2 2 nd f n
25 13 24 syl f 2 n 2 nd f n
26 elmapi f 2 f : 2
27 26 adantr f 2 n f : 2
28 simpr f 2 n n
29 ovolfcl f : 2 n 1 st f n 2 nd f n 1 st f n 2 nd f n
30 27 28 29 syl2anc f 2 n 1 st f n 2 nd f n 1 st f n 2 nd f n
31 30 simp3d f 2 n 1 st f n 2 nd f n
32 volioo 1 st f n 2 nd f n 1 st f n 2 nd f n vol 1 st f n 2 nd f n = 2 nd f n 1 st f n
33 23 25 31 32 syl3anc f 2 n vol 1 st f n 2 nd f n = 2 nd f n 1 st f n
34 21 33 eqtrd f 2 n vol . f n = 2 nd f n 1 st f n
35 ioof . : * × * 𝒫
36 ffun . : * × * 𝒫 Fun .
37 35 36 ax-mp Fun .
38 37 a1i f 2 n Fun .
39 rexpssxrxp 2 * × *
40 39 13 sseldi f 2 n f n * × *
41 35 fdmi dom . = * × *
42 41 eqcomi * × * = dom .
43 42 a1i f 2 n * × * = dom .
44 40 43 eleqtrd f 2 n f n dom .
45 fvco Fun . f n dom . vol . f n = vol . f n
46 38 44 45 syl2anc f 2 n vol . f n = vol . f n
47 15 fveq2d f 2 n abs f n = abs 1 st f n 2 nd f n
48 df-ov 1 st f n abs 2 nd f n = abs 1 st f n 2 nd f n
49 48 eqcomi abs 1 st f n 2 nd f n = 1 st f n abs 2 nd f n
50 49 a1i f 2 n abs 1 st f n 2 nd f n = 1 st f n abs 2 nd f n
51 23 recnd f 2 n 1 st f n
52 25 recnd f 2 n 2 nd f n
53 eqid abs = abs
54 53 cnmetdval 1 st f n 2 nd f n 1 st f n abs 2 nd f n = 1 st f n 2 nd f n
55 51 52 54 syl2anc f 2 n 1 st f n abs 2 nd f n = 1 st f n 2 nd f n
56 abssub 1 st f n 2 nd f n 1 st f n 2 nd f n = 2 nd f n 1 st f n
57 51 52 56 syl2anc f 2 n 1 st f n 2 nd f n = 2 nd f n 1 st f n
58 23 25 31 abssubge0d f 2 n 2 nd f n 1 st f n = 2 nd f n 1 st f n
59 55 57 58 3eqtrd f 2 n 1 st f n abs 2 nd f n = 2 nd f n 1 st f n
60 47 50 59 3eqtrd f 2 n abs f n = 2 nd f n 1 st f n
61 34 46 60 3eqtr4d f 2 n vol . f n = abs f n
62 61 mpteq2dva f 2 n vol . f n = n abs f n
63 volioof vol . : * × * 0 +∞
64 63 a1i f 2 vol . : * × * 0 +∞
65 39 a1i f 2 2 * × *
66 12 65 fssd f 2 f : * × *
67 fcompt vol . : * × * 0 +∞ f : * × * vol . f = n vol . f n
68 64 66 67 syl2anc f 2 vol . f = n vol . f n
69 absf abs :
70 subf : ×
71 fco abs : : × abs : ×
72 69 70 71 mp2an abs : ×
73 72 a1i f 2 abs : ×
74 rr2sscn2 2 ×
75 74 a1i f 2 2 ×
76 12 75 fssd f 2 f : ×
77 fcompt abs : × f : × abs f = n abs f n
78 73 76 77 syl2anc f 2 abs f = n abs f n
79 62 68 78 3eqtr4d f 2 vol . f = abs f
80 79 fveq2d f 2 sum^ vol . f = sum^ abs f
81 80 eqeq2d f 2 y = sum^ vol . f y = sum^ abs f
82 81 anbi2d f 2 A ran . f y = sum^ vol . f A ran . f y = sum^ abs f
83 82 rexbiia f 2 A ran . f y = sum^ vol . f f 2 A ran . f y = sum^ abs f
84 83 rabbii y * | f 2 A ran . f y = sum^ vol . f = y * | f 2 A ran . f y = sum^ abs f
85 2 84 eqtr2i y * | f 2 A ran . f y = sum^ abs f = M
86 85 infeq1i sup y * | f 2 A ran . f y = sum^ abs f * < = sup M * <
87 86 a1i φ sup y * | f 2 A ran . f y = sum^ abs f * < = sup M * <
88 4 87 eqtrd φ vol * A = sup M * <