| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ovolval3.a |
|
| 2 |
|
ovolval3.m |
|
| 3 |
|
eqid |
|
| 4 |
1 3
|
ovolval2 |
|
| 5 |
|
reex |
|
| 6 |
5 5
|
xpex |
|
| 7 |
|
inss2 |
|
| 8 |
|
mapss |
|
| 9 |
6 7 8
|
mp2an |
|
| 10 |
9
|
sseli |
|
| 11 |
|
elmapi |
|
| 12 |
10 11
|
syl |
|
| 13 |
12
|
ffvelcdmda |
|
| 14 |
|
1st2nd2 |
|
| 15 |
13 14
|
syl |
|
| 16 |
15
|
fveq2d |
|
| 17 |
|
df-ov |
|
| 18 |
17
|
eqcomi |
|
| 19 |
18
|
a1i |
|
| 20 |
16 19
|
eqtrd |
|
| 21 |
20
|
fveq2d |
|
| 22 |
|
xp1st |
|
| 23 |
13 22
|
syl |
|
| 24 |
|
xp2nd |
|
| 25 |
13 24
|
syl |
|
| 26 |
|
elmapi |
|
| 27 |
26
|
adantr |
|
| 28 |
|
simpr |
|
| 29 |
|
ovolfcl |
|
| 30 |
27 28 29
|
syl2anc |
|
| 31 |
30
|
simp3d |
|
| 32 |
|
volioo |
|
| 33 |
23 25 31 32
|
syl3anc |
|
| 34 |
21 33
|
eqtrd |
|
| 35 |
|
ioof |
|
| 36 |
|
ffun |
|
| 37 |
35 36
|
ax-mp |
|
| 38 |
37
|
a1i |
|
| 39 |
|
rexpssxrxp |
|
| 40 |
39 13
|
sselid |
|
| 41 |
35
|
fdmi |
|
| 42 |
41
|
eqcomi |
|
| 43 |
42
|
a1i |
|
| 44 |
40 43
|
eleqtrd |
|
| 45 |
|
fvco |
|
| 46 |
38 44 45
|
syl2anc |
|
| 47 |
15
|
fveq2d |
|
| 48 |
|
df-ov |
|
| 49 |
48
|
eqcomi |
|
| 50 |
49
|
a1i |
|
| 51 |
23
|
recnd |
|
| 52 |
25
|
recnd |
|
| 53 |
|
eqid |
|
| 54 |
53
|
cnmetdval |
|
| 55 |
51 52 54
|
syl2anc |
|
| 56 |
|
abssub |
|
| 57 |
51 52 56
|
syl2anc |
|
| 58 |
23 25 31
|
abssubge0d |
|
| 59 |
55 57 58
|
3eqtrd |
|
| 60 |
47 50 59
|
3eqtrd |
|
| 61 |
34 46 60
|
3eqtr4d |
|
| 62 |
61
|
mpteq2dva |
|
| 63 |
|
volioof |
|
| 64 |
63
|
a1i |
|
| 65 |
39
|
a1i |
|
| 66 |
12 65
|
fssd |
|
| 67 |
|
fcompt |
|
| 68 |
64 66 67
|
syl2anc |
|
| 69 |
|
absf |
|
| 70 |
|
subf |
|
| 71 |
|
fco |
|
| 72 |
69 70 71
|
mp2an |
|
| 73 |
72
|
a1i |
|
| 74 |
|
rr2sscn2 |
|
| 75 |
74
|
a1i |
|
| 76 |
12 75
|
fssd |
|
| 77 |
|
fcompt |
|
| 78 |
73 76 77
|
syl2anc |
|
| 79 |
62 68 78
|
3eqtr4d |
|
| 80 |
79
|
fveq2d |
|
| 81 |
80
|
eqeq2d |
|
| 82 |
81
|
anbi2d |
|
| 83 |
82
|
rexbiia |
|
| 84 |
83
|
rabbii |
|
| 85 |
2 84
|
eqtr2i |
|
| 86 |
85
|
infeq1i |
|
| 87 |
86
|
a1i |
|
| 88 |
4 87
|
eqtrd |
|