Metamath Proof Explorer


Theorem ovnsubadd2

Description: ( voln*X ) is subadditive. Proposition 115D (a)(iv) of Fremlin1 p. 31 . The special case of the union of 2 sets. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses ovnsubadd2.x φ X Fin
ovnsubadd2.a φ A X
ovnsubadd2.b φ B X
Assertion ovnsubadd2 φ voln* X A B voln* X A + 𝑒 voln* X B

Proof

Step Hyp Ref Expression
1 ovnsubadd2.x φ X Fin
2 ovnsubadd2.a φ A X
3 ovnsubadd2.b φ B X
4 eqeq1 m = n m = 1 n = 1
5 eqeq1 m = n m = 2 n = 2
6 5 ifbid m = n if m = 2 B = if n = 2 B
7 4 6 ifbieq2d m = n if m = 1 A if m = 2 B = if n = 1 A if n = 2 B
8 7 cbvmptv m if m = 1 A if m = 2 B = n if n = 1 A if n = 2 B
9 1 2 3 8 ovnsubadd2lem φ voln* X A B voln* X A + 𝑒 voln* X B