Step |
Hyp |
Ref |
Expression |
1 |
|
df-abs |
⊢ abs = ( 𝑥 ∈ ℂ ↦ ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ) |
2 |
|
0xr |
⊢ 0 ∈ ℝ* |
3 |
2
|
a1i |
⊢ ( 𝑥 ∈ ℂ → 0 ∈ ℝ* ) |
4 |
|
pnfxr |
⊢ +∞ ∈ ℝ* |
5 |
4
|
a1i |
⊢ ( 𝑥 ∈ ℂ → +∞ ∈ ℝ* ) |
6 |
|
absval |
⊢ ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) = ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ) |
7 |
|
abscl |
⊢ ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) ∈ ℝ ) |
8 |
6 7
|
eqeltrrd |
⊢ ( 𝑥 ∈ ℂ → ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ∈ ℝ ) |
9 |
8
|
rexrd |
⊢ ( 𝑥 ∈ ℂ → ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ∈ ℝ* ) |
10 |
|
cjmulrcl |
⊢ ( 𝑥 ∈ ℂ → ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ∈ ℝ ) |
11 |
|
cjmulge0 |
⊢ ( 𝑥 ∈ ℂ → 0 ≤ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) |
12 |
|
sqrtge0 |
⊢ ( ( ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) → 0 ≤ ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ) |
13 |
10 11 12
|
syl2anc |
⊢ ( 𝑥 ∈ ℂ → 0 ≤ ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ) |
14 |
8
|
ltpnfd |
⊢ ( 𝑥 ∈ ℂ → ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) < +∞ ) |
15 |
3 5 9 13 14
|
elicod |
⊢ ( 𝑥 ∈ ℂ → ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ∈ ( 0 [,) +∞ ) ) |
16 |
1 15
|
fmpti |
⊢ abs : ℂ ⟶ ( 0 [,) +∞ ) |