Metamath Proof Explorer


Theorem absfico

Description: Mapping domain and codomain of the absolute value function. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Assertion absfico abs : ℂ ⟶ ( 0 [,) +∞ )

Proof

Step Hyp Ref Expression
1 df-abs abs = ( 𝑥 ∈ ℂ ↦ ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) )
2 0xr 0 ∈ ℝ*
3 2 a1i ( 𝑥 ∈ ℂ → 0 ∈ ℝ* )
4 pnfxr +∞ ∈ ℝ*
5 4 a1i ( 𝑥 ∈ ℂ → +∞ ∈ ℝ* )
6 absval ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) = ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) )
7 abscl ( 𝑥 ∈ ℂ → ( abs ‘ 𝑥 ) ∈ ℝ )
8 6 7 eqeltrrd ( 𝑥 ∈ ℂ → ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ∈ ℝ )
9 8 rexrd ( 𝑥 ∈ ℂ → ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ∈ ℝ* )
10 cjmulrcl ( 𝑥 ∈ ℂ → ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ∈ ℝ )
11 cjmulge0 ( 𝑥 ∈ ℂ → 0 ≤ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) )
12 sqrtge0 ( ( ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ∈ ℝ ∧ 0 ≤ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) → 0 ≤ ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) )
13 10 11 12 syl2anc ( 𝑥 ∈ ℂ → 0 ≤ ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) )
14 8 ltpnfd ( 𝑥 ∈ ℂ → ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) < +∞ )
15 3 5 9 13 14 elicod ( 𝑥 ∈ ℂ → ( √ ‘ ( 𝑥 · ( ∗ ‘ 𝑥 ) ) ) ∈ ( 0 [,) +∞ ) )
16 1 15 fmpti abs : ℂ ⟶ ( 0 [,) +∞ )