Metamath Proof Explorer


Theorem abssuble0d

Description: Absolute value of a nonpositive difference. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses absltd.1 φ A
absltd.2 φ B
abssubge0d.2 φ A B
Assertion abssuble0d φ A B = B A

Proof

Step Hyp Ref Expression
1 absltd.1 φ A
2 absltd.2 φ B
3 abssubge0d.2 φ A B
4 abssuble0 A B A B A B = B A
5 1 2 3 4 syl3anc φ A B = B A