Metamath Proof Explorer


Theorem absdifltd

Description: The absolute value of a difference and 'less than' relation. (Contributed by Mario Carneiro, 29-May-2016)

Ref Expression
Hypotheses absltd.1 φA
absltd.2 φB
absltd.3 φC
Assertion absdifltd φAB<CBC<AA<B+C

Proof

Step Hyp Ref Expression
1 absltd.1 φA
2 absltd.2 φB
3 absltd.3 φC
4 absdiflt ABCAB<CBC<AA<B+C
5 1 2 3 4 syl3anc φAB<CBC<AA<B+C