Metamath Proof Explorer


Theorem fcomptss

Description: Express composition of two functions as a maps-to applying both in sequence. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses fcomptss.a φF:AB
fcomptss.b φBC
fcomptss.g φG:CD
Assertion fcomptss φGF=xAGFx

Proof

Step Hyp Ref Expression
1 fcomptss.a φF:AB
2 fcomptss.b φBC
3 fcomptss.g φG:CD
4 1 2 fssd φF:AC
5 fcompt G:CDF:ACGF=xAGFx
6 3 4 5 syl2anc φGF=xAGFx