Description: n-dimensional Lebesgue measurable sets are subsets of the n-dimensional real Euclidean space. (Contributed by Glauco Siliprandi, 3-Mar-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | vonmblss2.x | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
| vonmblss2.y | ⊢ ( 𝜑 → 𝑌 ∈ dom ( voln ‘ 𝑋 ) ) | ||
| Assertion | vonmblss2 | ⊢ ( 𝜑 → 𝑌 ⊆ ( ℝ ↑m 𝑋 ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | vonmblss2.x | ⊢ ( 𝜑 → 𝑋 ∈ Fin ) | |
| 2 | vonmblss2.y | ⊢ ( 𝜑 → 𝑌 ∈ dom ( voln ‘ 𝑋 ) ) | |
| 3 | 1 | vonmblss | ⊢ ( 𝜑 → dom ( voln ‘ 𝑋 ) ⊆ 𝒫 ( ℝ ↑m 𝑋 ) ) | 
| 4 | 3 2 | sseldd | ⊢ ( 𝜑 → 𝑌 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) | 
| 5 | elpwi | ⊢ ( 𝑌 ∈ 𝒫 ( ℝ ↑m 𝑋 ) → 𝑌 ⊆ ( ℝ ↑m 𝑋 ) ) | |
| 6 | 4 5 | syl | ⊢ ( 𝜑 → 𝑌 ⊆ ( ℝ ↑m 𝑋 ) ) |