| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iftrue | ⊢ ( 𝐴  <  𝐵  →  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 2 | 1 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  𝐵 )  →  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 3 |  | volico | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  =  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 4 | 3 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  𝐵 )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  =  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 5 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  𝐵 )  →  𝐴  ∈  ℝ ) | 
						
							| 6 |  | simplr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  𝐵 )  →  𝐵  ∈  ℝ ) | 
						
							| 7 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  𝐵 )  →  𝐴  <  𝐵 ) | 
						
							| 8 | 5 6 7 | ltled | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  𝐵 )  →  𝐴  ≤  𝐵 ) | 
						
							| 9 | 8 | iftrued | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  𝐵 )  →  if ( 𝐴  ≤  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 10 | 2 4 9 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  <  𝐵 )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  =  if ( 𝐴  ≤  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 11 | 10 | adantlr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  ∧  𝐴  <  𝐵 )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  =  if ( 𝐴  ≤  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 12 |  | simpll | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  ∧  ¬  𝐴  <  𝐵 )  →  ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ ) ) | 
						
							| 13 | 12 | simpld | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  ∧  ¬  𝐴  <  𝐵 )  →  𝐴  ∈  ℝ ) | 
						
							| 14 | 12 | simprd | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  ∧  ¬  𝐴  <  𝐵 )  →  𝐵  ∈  ℝ ) | 
						
							| 15 |  | simplr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  ∧  ¬  𝐴  <  𝐵 )  →  𝐴  ≤  𝐵 ) | 
						
							| 16 |  | simpr | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  ∧  ¬  𝐴  <  𝐵 )  →  ¬  𝐴  <  𝐵 ) | 
						
							| 17 | 13 14 15 16 | lenlteq | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  ∧  ¬  𝐴  <  𝐵 )  →  𝐴  =  𝐵 ) | 
						
							| 18 |  | simplr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  =  𝐵 )  →  𝐵  ∈  ℝ ) | 
						
							| 19 |  | simpr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  =  𝐵 )  →  𝐴  =  𝐵 ) | 
						
							| 20 | 19 | eqcomd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  =  𝐵 )  →  𝐵  =  𝐴 ) | 
						
							| 21 | 18 20 | eqled | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  =  𝐵 )  →  𝐵  ≤  𝐴 ) | 
						
							| 22 |  | simpll | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  =  𝐵 )  →  𝐴  ∈  ℝ ) | 
						
							| 23 | 18 22 | lenltd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  =  𝐵 )  →  ( 𝐵  ≤  𝐴  ↔  ¬  𝐴  <  𝐵 ) ) | 
						
							| 24 | 21 23 | mpbid | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  =  𝐵 )  →  ¬  𝐴  <  𝐵 ) | 
						
							| 25 | 24 | iffalsed | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  =  𝐵 )  →  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  =  0 ) | 
						
							| 26 |  | recn | ⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ ) | 
						
							| 27 | 26 | subidd | ⊢ ( 𝐴  ∈  ℝ  →  ( 𝐴  −  𝐴 )  =  0 ) | 
						
							| 28 | 27 | eqcomd | ⊢ ( 𝐴  ∈  ℝ  →  0  =  ( 𝐴  −  𝐴 ) ) | 
						
							| 29 | 28 | ad2antrr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  =  𝐵 )  →  0  =  ( 𝐴  −  𝐴 ) ) | 
						
							| 30 |  | oveq1 | ⊢ ( 𝐴  =  𝐵  →  ( 𝐴  −  𝐴 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 31 | 30 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  =  𝐵 )  →  ( 𝐴  −  𝐴 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 32 | 25 29 31 | 3eqtrd | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  =  𝐵 )  →  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 33 | 3 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  =  𝐵 )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  =  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 34 | 22 19 | eqled | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  =  𝐵 )  →  𝐴  ≤  𝐵 ) | 
						
							| 35 | 34 | iftrued | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  =  𝐵 )  →  if ( 𝐴  ≤  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  =  ( 𝐵  −  𝐴 ) ) | 
						
							| 36 | 32 33 35 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  =  𝐵 )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  =  if ( 𝐴  ≤  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 37 | 12 17 36 | syl2anc | ⊢ ( ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  ∧  ¬  𝐴  <  𝐵 )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  =  if ( 𝐴  ≤  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 38 | 11 37 | pm2.61dan | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  𝐴  ≤  𝐵 )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  =  if ( 𝐴  ≤  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 39 | 8 | stoic1a | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ¬  𝐴  ≤  𝐵 )  →  ¬  𝐴  <  𝐵 ) | 
						
							| 40 | 39 | iffalsed | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ¬  𝐴  ≤  𝐵 )  →  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  =  0 ) | 
						
							| 41 | 3 | adantr | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ¬  𝐴  ≤  𝐵 )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  =  if ( 𝐴  <  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 42 |  | iffalse | ⊢ ( ¬  𝐴  ≤  𝐵  →  if ( 𝐴  ≤  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  =  0 ) | 
						
							| 43 | 42 | adantl | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ¬  𝐴  ≤  𝐵 )  →  if ( 𝐴  ≤  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 )  =  0 ) | 
						
							| 44 | 40 41 43 | 3eqtr4d | ⊢ ( ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  ∧  ¬  𝐴  ≤  𝐵 )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  =  if ( 𝐴  ≤  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) | 
						
							| 45 | 38 44 | pm2.61dan | ⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( vol ‘ ( 𝐴 [,) 𝐵 ) )  =  if ( 𝐴  ≤  𝐵 ,  ( 𝐵  −  𝐴 ) ,  0 ) ) |