| Step |
Hyp |
Ref |
Expression |
| 1 |
|
iftrue |
⊢ ( 𝐴 < 𝐵 → if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = ( 𝐵 − 𝐴 ) ) |
| 2 |
1
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < 𝐵 ) → if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = ( 𝐵 − 𝐴 ) ) |
| 3 |
|
volico |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
| 4 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
| 5 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ ) |
| 6 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ ) |
| 7 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < 𝐵 ) → 𝐴 < 𝐵 ) |
| 8 |
5 6 7
|
ltled |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 9 |
8
|
iftrued |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < 𝐵 ) → if ( 𝐴 ≤ 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = ( 𝐵 − 𝐴 ) ) |
| 10 |
2 4 9
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 ≤ 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
| 11 |
10
|
adantlr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 ≤ 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
| 12 |
|
simpll |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 < 𝐵 ) → ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ) |
| 13 |
12
|
simpld |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 < 𝐵 ) → 𝐴 ∈ ℝ ) |
| 14 |
12
|
simprd |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 < 𝐵 ) → 𝐵 ∈ ℝ ) |
| 15 |
|
simplr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 < 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 16 |
|
simpr |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 < 𝐵 ) → ¬ 𝐴 < 𝐵 ) |
| 17 |
13 14 15 16
|
lenlteq |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 < 𝐵 ) → 𝐴 = 𝐵 ) |
| 18 |
|
simplr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 𝐵 ) → 𝐵 ∈ ℝ ) |
| 19 |
|
simpr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 𝐵 ) → 𝐴 = 𝐵 ) |
| 20 |
19
|
eqcomd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 𝐵 ) → 𝐵 = 𝐴 ) |
| 21 |
18 20
|
eqled |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 𝐵 ) → 𝐵 ≤ 𝐴 ) |
| 22 |
|
simpll |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 𝐵 ) → 𝐴 ∈ ℝ ) |
| 23 |
18 22
|
lenltd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 𝐵 ) → ( 𝐵 ≤ 𝐴 ↔ ¬ 𝐴 < 𝐵 ) ) |
| 24 |
21 23
|
mpbid |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 𝐵 ) → ¬ 𝐴 < 𝐵 ) |
| 25 |
24
|
iffalsed |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 𝐵 ) → if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = 0 ) |
| 26 |
|
recn |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℂ ) |
| 27 |
26
|
subidd |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 − 𝐴 ) = 0 ) |
| 28 |
27
|
eqcomd |
⊢ ( 𝐴 ∈ ℝ → 0 = ( 𝐴 − 𝐴 ) ) |
| 29 |
28
|
ad2antrr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 𝐵 ) → 0 = ( 𝐴 − 𝐴 ) ) |
| 30 |
|
oveq1 |
⊢ ( 𝐴 = 𝐵 → ( 𝐴 − 𝐴 ) = ( 𝐵 − 𝐴 ) ) |
| 31 |
30
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 𝐵 ) → ( 𝐴 − 𝐴 ) = ( 𝐵 − 𝐴 ) ) |
| 32 |
25 29 31
|
3eqtrd |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 𝐵 ) → if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = ( 𝐵 − 𝐴 ) ) |
| 33 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 𝐵 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
| 34 |
22 19
|
eqled |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 𝐵 ) → 𝐴 ≤ 𝐵 ) |
| 35 |
34
|
iftrued |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 𝐵 ) → if ( 𝐴 ≤ 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = ( 𝐵 − 𝐴 ) ) |
| 36 |
32 33 35
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 = 𝐵 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 ≤ 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
| 37 |
12 17 36
|
syl2anc |
⊢ ( ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) ∧ ¬ 𝐴 < 𝐵 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 ≤ 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
| 38 |
11 37
|
pm2.61dan |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 ≤ 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
| 39 |
8
|
stoic1a |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ¬ 𝐴 < 𝐵 ) |
| 40 |
39
|
iffalsed |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 ≤ 𝐵 ) → if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = 0 ) |
| 41 |
3
|
adantr |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 < 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
| 42 |
|
iffalse |
⊢ ( ¬ 𝐴 ≤ 𝐵 → if ( 𝐴 ≤ 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = 0 ) |
| 43 |
42
|
adantl |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 ≤ 𝐵 ) → if ( 𝐴 ≤ 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) = 0 ) |
| 44 |
40 41 43
|
3eqtr4d |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) ∧ ¬ 𝐴 ≤ 𝐵 ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 ≤ 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |
| 45 |
38 44
|
pm2.61dan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( vol ‘ ( 𝐴 [,) 𝐵 ) ) = if ( 𝐴 ≤ 𝐵 , ( 𝐵 − 𝐴 ) , 0 ) ) |