Metamath Proof Explorer


Theorem dmovn

Description: The domain of the Lebesgue outer measure is the power set of the n-dimensional Real numbers. Step (a)(i) of the proof of Proposition 115D (a) of Fremlin1 p. 30. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis dmovn.1 ( 𝜑𝑋 ∈ Fin )
Assertion dmovn ( 𝜑 → dom ( voln* ‘ 𝑋 ) = 𝒫 ( ℝ ↑m 𝑋 ) )

Proof

Step Hyp Ref Expression
1 dmovn.1 ( 𝜑𝑋 ∈ Fin )
2 1 ovnf ( 𝜑 → ( voln* ‘ 𝑋 ) : 𝒫 ( ℝ ↑m 𝑋 ) ⟶ ( 0 [,] +∞ ) )
3 2 fdmd ( 𝜑 → dom ( voln* ‘ 𝑋 ) = 𝒫 ( ℝ ↑m 𝑋 ) )