Step |
Hyp |
Ref |
Expression |
1 |
|
mblvon.1 |
|- ( ph -> X e. Fin ) |
2 |
|
mblvon.2 |
|- ( ph -> A e. dom ( voln ` X ) ) |
3 |
1
|
vonval |
|- ( ph -> ( voln ` X ) = ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) ) |
4 |
3
|
fveq1d |
|- ( ph -> ( ( voln ` X ) ` A ) = ( ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) ` A ) ) |
5 |
1
|
dmvon |
|- ( ph -> dom ( voln ` X ) = ( CaraGen ` ( voln* ` X ) ) ) |
6 |
2 5
|
eleqtrd |
|- ( ph -> A e. ( CaraGen ` ( voln* ` X ) ) ) |
7 |
|
fvres |
|- ( A e. ( CaraGen ` ( voln* ` X ) ) -> ( ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) ` A ) = ( ( voln* ` X ) ` A ) ) |
8 |
6 7
|
syl |
|- ( ph -> ( ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) ` A ) = ( ( voln* ` X ) ` A ) ) |
9 |
4 8
|
eqtrd |
|- ( ph -> ( ( voln ` X ) ` A ) = ( ( voln* ` X ) ` A ) ) |