Metamath Proof Explorer


Theorem mblvon

Description: The n-dimensional Lebesgue measure of a measurable set is the same as its n-dimensional Lebesgue outer measure. (Contributed by Glauco Siliprandi, 3-Mar-2021)

Ref Expression
Hypotheses mblvon.1
|- ( ph -> X e. Fin )
mblvon.2
|- ( ph -> A e. dom ( voln ` X ) )
Assertion mblvon
|- ( ph -> ( ( voln ` X ) ` A ) = ( ( voln* ` X ) ` A ) )

Proof

Step Hyp Ref Expression
1 mblvon.1
 |-  ( ph -> X e. Fin )
2 mblvon.2
 |-  ( ph -> A e. dom ( voln ` X ) )
3 1 vonval
 |-  ( ph -> ( voln ` X ) = ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) )
4 3 fveq1d
 |-  ( ph -> ( ( voln ` X ) ` A ) = ( ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) ` A ) )
5 1 dmvon
 |-  ( ph -> dom ( voln ` X ) = ( CaraGen ` ( voln* ` X ) ) )
6 2 5 eleqtrd
 |-  ( ph -> A e. ( CaraGen ` ( voln* ` X ) ) )
7 fvres
 |-  ( A e. ( CaraGen ` ( voln* ` X ) ) -> ( ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) ` A ) = ( ( voln* ` X ) ` A ) )
8 6 7 syl
 |-  ( ph -> ( ( ( voln* ` X ) |` ( CaraGen ` ( voln* ` X ) ) ) ` A ) = ( ( voln* ` X ) ` A ) )
9 4 8 eqtrd
 |-  ( ph -> ( ( voln ` X ) ` A ) = ( ( voln* ` X ) ` A ) )