Step |
Hyp |
Ref |
Expression |
1 |
|
hoimbl.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
hoimbl.s |
⊢ 𝑆 = dom ( voln ‘ 𝑋 ) |
3 |
|
hoimbl.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
4 |
|
hoimbl.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
5 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝑋 ∈ Fin ) |
6 |
5
|
rrnmbl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ℝ ↑m 𝑋 ) ∈ dom ( voln ‘ 𝑋 ) ) |
7 |
|
reex |
⊢ ℝ ∈ V |
8 |
|
mapdm0 |
⊢ ( ℝ ∈ V → ( ℝ ↑m ∅ ) = { ∅ } ) |
9 |
7 8
|
ax-mp |
⊢ ( ℝ ↑m ∅ ) = { ∅ } |
10 |
9
|
eqcomi |
⊢ { ∅ } = ( ℝ ↑m ∅ ) |
11 |
10
|
a1i |
⊢ ( 𝑋 = ∅ → { ∅ } = ( ℝ ↑m ∅ ) ) |
12 |
|
id |
⊢ ( 𝑋 = ∅ → 𝑋 = ∅ ) |
13 |
12
|
ixpeq1d |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) [,) ( 𝐵 ‘ 𝑖 ) ) = X 𝑖 ∈ ∅ ( ( 𝐴 ‘ 𝑖 ) [,) ( 𝐵 ‘ 𝑖 ) ) ) |
14 |
|
ixp0x |
⊢ X 𝑖 ∈ ∅ ( ( 𝐴 ‘ 𝑖 ) [,) ( 𝐵 ‘ 𝑖 ) ) = { ∅ } |
15 |
14
|
a1i |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ ∅ ( ( 𝐴 ‘ 𝑖 ) [,) ( 𝐵 ‘ 𝑖 ) ) = { ∅ } ) |
16 |
13 15
|
eqtrd |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) [,) ( 𝐵 ‘ 𝑖 ) ) = { ∅ } ) |
17 |
|
oveq2 |
⊢ ( 𝑋 = ∅ → ( ℝ ↑m 𝑋 ) = ( ℝ ↑m ∅ ) ) |
18 |
11 16 17
|
3eqtr4d |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) [,) ( 𝐵 ‘ 𝑖 ) ) = ( ℝ ↑m 𝑋 ) ) |
19 |
18
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) [,) ( 𝐵 ‘ 𝑖 ) ) = ( ℝ ↑m 𝑋 ) ) |
20 |
2
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝑆 = dom ( voln ‘ 𝑋 ) ) |
21 |
19 20
|
eleq12d |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) [,) ( 𝐵 ‘ 𝑖 ) ) ∈ 𝑆 ↔ ( ℝ ↑m 𝑋 ) ∈ dom ( voln ‘ 𝑋 ) ) ) |
22 |
6 21
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) [,) ( 𝐵 ‘ 𝑖 ) ) ∈ 𝑆 ) |
23 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ∈ Fin ) |
24 |
12
|
necon3bi |
⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) |
25 |
24
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≠ ∅ ) |
26 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝐴 : 𝑋 ⟶ ℝ ) |
27 |
4
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝐵 : 𝑋 ⟶ ℝ ) |
28 |
|
id |
⊢ ( 𝑤 = 𝑥 → 𝑤 = 𝑥 ) |
29 |
|
eqidd |
⊢ ( 𝑤 = 𝑥 → ℝ = ℝ ) |
30 |
28
|
ixpeq1d |
⊢ ( 𝑤 = 𝑥 → X 𝑗 ∈ 𝑤 if ( 𝑗 = ℎ , ( -∞ (,) 𝑧 ) , ℝ ) = X 𝑗 ∈ 𝑥 if ( 𝑗 = ℎ , ( -∞ (,) 𝑧 ) , ℝ ) ) |
31 |
|
eqeq1 |
⊢ ( 𝑗 = 𝑖 → ( 𝑗 = ℎ ↔ 𝑖 = ℎ ) ) |
32 |
31
|
ifbid |
⊢ ( 𝑗 = 𝑖 → if ( 𝑗 = ℎ , ( -∞ (,) 𝑧 ) , ℝ ) = if ( 𝑖 = ℎ , ( -∞ (,) 𝑧 ) , ℝ ) ) |
33 |
32
|
cbvixpv |
⊢ X 𝑗 ∈ 𝑥 if ( 𝑗 = ℎ , ( -∞ (,) 𝑧 ) , ℝ ) = X 𝑖 ∈ 𝑥 if ( 𝑖 = ℎ , ( -∞ (,) 𝑧 ) , ℝ ) |
34 |
33
|
a1i |
⊢ ( 𝑤 = 𝑥 → X 𝑗 ∈ 𝑥 if ( 𝑗 = ℎ , ( -∞ (,) 𝑧 ) , ℝ ) = X 𝑖 ∈ 𝑥 if ( 𝑖 = ℎ , ( -∞ (,) 𝑧 ) , ℝ ) ) |
35 |
30 34
|
eqtrd |
⊢ ( 𝑤 = 𝑥 → X 𝑗 ∈ 𝑤 if ( 𝑗 = ℎ , ( -∞ (,) 𝑧 ) , ℝ ) = X 𝑖 ∈ 𝑥 if ( 𝑖 = ℎ , ( -∞ (,) 𝑧 ) , ℝ ) ) |
36 |
28 29 35
|
mpoeq123dv |
⊢ ( 𝑤 = 𝑥 → ( ℎ ∈ 𝑤 , 𝑧 ∈ ℝ ↦ X 𝑗 ∈ 𝑤 if ( 𝑗 = ℎ , ( -∞ (,) 𝑧 ) , ℝ ) ) = ( ℎ ∈ 𝑥 , 𝑧 ∈ ℝ ↦ X 𝑖 ∈ 𝑥 if ( 𝑖 = ℎ , ( -∞ (,) 𝑧 ) , ℝ ) ) ) |
37 |
|
eqeq2 |
⊢ ( ℎ = 𝑙 → ( 𝑖 = ℎ ↔ 𝑖 = 𝑙 ) ) |
38 |
37
|
ifbid |
⊢ ( ℎ = 𝑙 → if ( 𝑖 = ℎ , ( -∞ (,) 𝑧 ) , ℝ ) = if ( 𝑖 = 𝑙 , ( -∞ (,) 𝑧 ) , ℝ ) ) |
39 |
38
|
ixpeq2dv |
⊢ ( ℎ = 𝑙 → X 𝑖 ∈ 𝑥 if ( 𝑖 = ℎ , ( -∞ (,) 𝑧 ) , ℝ ) = X 𝑖 ∈ 𝑥 if ( 𝑖 = 𝑙 , ( -∞ (,) 𝑧 ) , ℝ ) ) |
40 |
|
oveq2 |
⊢ ( 𝑧 = 𝑦 → ( -∞ (,) 𝑧 ) = ( -∞ (,) 𝑦 ) ) |
41 |
40
|
ifeq1d |
⊢ ( 𝑧 = 𝑦 → if ( 𝑖 = 𝑙 , ( -∞ (,) 𝑧 ) , ℝ ) = if ( 𝑖 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) ) |
42 |
41
|
ixpeq2dv |
⊢ ( 𝑧 = 𝑦 → X 𝑖 ∈ 𝑥 if ( 𝑖 = 𝑙 , ( -∞ (,) 𝑧 ) , ℝ ) = X 𝑖 ∈ 𝑥 if ( 𝑖 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) ) |
43 |
39 42
|
cbvmpov |
⊢ ( ℎ ∈ 𝑥 , 𝑧 ∈ ℝ ↦ X 𝑖 ∈ 𝑥 if ( 𝑖 = ℎ , ( -∞ (,) 𝑧 ) , ℝ ) ) = ( 𝑙 ∈ 𝑥 , 𝑦 ∈ ℝ ↦ X 𝑖 ∈ 𝑥 if ( 𝑖 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) ) |
44 |
43
|
a1i |
⊢ ( 𝑤 = 𝑥 → ( ℎ ∈ 𝑥 , 𝑧 ∈ ℝ ↦ X 𝑖 ∈ 𝑥 if ( 𝑖 = ℎ , ( -∞ (,) 𝑧 ) , ℝ ) ) = ( 𝑙 ∈ 𝑥 , 𝑦 ∈ ℝ ↦ X 𝑖 ∈ 𝑥 if ( 𝑖 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) ) ) |
45 |
36 44
|
eqtrd |
⊢ ( 𝑤 = 𝑥 → ( ℎ ∈ 𝑤 , 𝑧 ∈ ℝ ↦ X 𝑗 ∈ 𝑤 if ( 𝑗 = ℎ , ( -∞ (,) 𝑧 ) , ℝ ) ) = ( 𝑙 ∈ 𝑥 , 𝑦 ∈ ℝ ↦ X 𝑖 ∈ 𝑥 if ( 𝑖 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) ) ) |
46 |
45
|
cbvmptv |
⊢ ( 𝑤 ∈ Fin ↦ ( ℎ ∈ 𝑤 , 𝑧 ∈ ℝ ↦ X 𝑗 ∈ 𝑤 if ( 𝑗 = ℎ , ( -∞ (,) 𝑧 ) , ℝ ) ) ) = ( 𝑥 ∈ Fin ↦ ( 𝑙 ∈ 𝑥 , 𝑦 ∈ ℝ ↦ X 𝑖 ∈ 𝑥 if ( 𝑖 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) ) ) |
47 |
23 25 2 26 27 46
|
hoimbllem |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) [,) ( 𝐵 ‘ 𝑖 ) ) ∈ 𝑆 ) |
48 |
22 47
|
pm2.61dan |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) [,) ( 𝐵 ‘ 𝑖 ) ) ∈ 𝑆 ) |