| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opnvonmbllem1.i |
⊢ Ⅎ 𝑖 𝜑 |
| 2 |
|
opnvonmbllem1.x |
⊢ ( 𝜑 → 𝑋 ∈ 𝑉 ) |
| 3 |
|
opnvonmbllem1.c |
⊢ ( 𝜑 → 𝐶 : 𝑋 ⟶ ℚ ) |
| 4 |
|
opnvonmbllem1.d |
⊢ ( 𝜑 → 𝐷 : 𝑋 ⟶ ℚ ) |
| 5 |
|
opnvonmbllem1.s |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ⊆ 𝐵 ) |
| 6 |
|
opnvonmbllem1.g |
⊢ ( 𝜑 → 𝐵 ⊆ 𝐺 ) |
| 7 |
|
opnvonmbllem1.y |
⊢ ( 𝜑 → 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
| 8 |
|
opnvonmbllem1.k |
⊢ 𝐾 = { ℎ ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ⊆ 𝐺 } |
| 9 |
|
opnvonmbllem1.h |
⊢ 𝐻 = ( 𝑖 ∈ 𝑋 ↦ 〈 ( 𝐶 ‘ 𝑖 ) , ( 𝐷 ‘ 𝑖 ) 〉 ) |
| 10 |
3
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐶 ‘ 𝑖 ) ∈ ℚ ) |
| 11 |
4
|
ffvelcdmda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐷 ‘ 𝑖 ) ∈ ℚ ) |
| 12 |
|
opelxpi |
⊢ ( ( ( 𝐶 ‘ 𝑖 ) ∈ ℚ ∧ ( 𝐷 ‘ 𝑖 ) ∈ ℚ ) → 〈 ( 𝐶 ‘ 𝑖 ) , ( 𝐷 ‘ 𝑖 ) 〉 ∈ ( ℚ × ℚ ) ) |
| 13 |
10 11 12
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 〈 ( 𝐶 ‘ 𝑖 ) , ( 𝐷 ‘ 𝑖 ) 〉 ∈ ( ℚ × ℚ ) ) |
| 14 |
1 13 9
|
fmptdf |
⊢ ( 𝜑 → 𝐻 : 𝑋 ⟶ ( ℚ × ℚ ) ) |
| 15 |
|
qex |
⊢ ℚ ∈ V |
| 16 |
15 15
|
xpex |
⊢ ( ℚ × ℚ ) ∈ V |
| 17 |
16
|
a1i |
⊢ ( 𝜑 → ( ℚ × ℚ ) ∈ V ) |
| 18 |
17 2
|
jca |
⊢ ( 𝜑 → ( ( ℚ × ℚ ) ∈ V ∧ 𝑋 ∈ 𝑉 ) ) |
| 19 |
|
elmapg |
⊢ ( ( ( ℚ × ℚ ) ∈ V ∧ 𝑋 ∈ 𝑉 ) → ( 𝐻 ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ↔ 𝐻 : 𝑋 ⟶ ( ℚ × ℚ ) ) ) |
| 20 |
18 19
|
syl |
⊢ ( 𝜑 → ( 𝐻 ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ↔ 𝐻 : 𝑋 ⟶ ( ℚ × ℚ ) ) ) |
| 21 |
14 20
|
mpbird |
⊢ ( 𝜑 → 𝐻 ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ) |
| 22 |
1 9
|
hoi2toco |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ( ( [,) ∘ 𝐻 ) ‘ 𝑖 ) = X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ) |
| 23 |
5 6
|
sstrd |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ( ( 𝐶 ‘ 𝑖 ) [,) ( 𝐷 ‘ 𝑖 ) ) ⊆ 𝐺 ) |
| 24 |
22 23
|
eqsstrd |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ( ( [,) ∘ 𝐻 ) ‘ 𝑖 ) ⊆ 𝐺 ) |
| 25 |
21 24
|
jca |
⊢ ( 𝜑 → ( 𝐻 ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∧ X 𝑖 ∈ 𝑋 ( ( [,) ∘ 𝐻 ) ‘ 𝑖 ) ⊆ 𝐺 ) ) |
| 26 |
|
nfcv |
⊢ Ⅎ 𝑖 ℎ |
| 27 |
|
nfmpt1 |
⊢ Ⅎ 𝑖 ( 𝑖 ∈ 𝑋 ↦ 〈 ( 𝐶 ‘ 𝑖 ) , ( 𝐷 ‘ 𝑖 ) 〉 ) |
| 28 |
9 27
|
nfcxfr |
⊢ Ⅎ 𝑖 𝐻 |
| 29 |
26 28
|
nfeq |
⊢ Ⅎ 𝑖 ℎ = 𝐻 |
| 30 |
|
coeq2 |
⊢ ( ℎ = 𝐻 → ( [,) ∘ ℎ ) = ( [,) ∘ 𝐻 ) ) |
| 31 |
30
|
fveq1d |
⊢ ( ℎ = 𝐻 → ( ( [,) ∘ ℎ ) ‘ 𝑖 ) = ( ( [,) ∘ 𝐻 ) ‘ 𝑖 ) ) |
| 32 |
31
|
adantr |
⊢ ( ( ℎ = 𝐻 ∧ 𝑖 ∈ 𝑋 ) → ( ( [,) ∘ ℎ ) ‘ 𝑖 ) = ( ( [,) ∘ 𝐻 ) ‘ 𝑖 ) ) |
| 33 |
29 32
|
ixpeq2d |
⊢ ( ℎ = 𝐻 → X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) = X 𝑖 ∈ 𝑋 ( ( [,) ∘ 𝐻 ) ‘ 𝑖 ) ) |
| 34 |
33
|
sseq1d |
⊢ ( ℎ = 𝐻 → ( X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ⊆ 𝐺 ↔ X 𝑖 ∈ 𝑋 ( ( [,) ∘ 𝐻 ) ‘ 𝑖 ) ⊆ 𝐺 ) ) |
| 35 |
34 8
|
elrab2 |
⊢ ( 𝐻 ∈ 𝐾 ↔ ( 𝐻 ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∧ X 𝑖 ∈ 𝑋 ( ( [,) ∘ 𝐻 ) ‘ 𝑖 ) ⊆ 𝐺 ) ) |
| 36 |
25 35
|
sylibr |
⊢ ( 𝜑 → 𝐻 ∈ 𝐾 ) |
| 37 |
7 22
|
eleqtrrd |
⊢ ( 𝜑 → 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ 𝐻 ) ‘ 𝑖 ) ) |
| 38 |
|
nfv |
⊢ Ⅎ ℎ 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ 𝐻 ) ‘ 𝑖 ) |
| 39 |
|
nfcv |
⊢ Ⅎ ℎ 𝐻 |
| 40 |
|
nfrab1 |
⊢ Ⅎ ℎ { ℎ ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ⊆ 𝐺 } |
| 41 |
8 40
|
nfcxfr |
⊢ Ⅎ ℎ 𝐾 |
| 42 |
33
|
eleq2d |
⊢ ( ℎ = 𝐻 → ( 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ↔ 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ 𝐻 ) ‘ 𝑖 ) ) ) |
| 43 |
38 39 41 42
|
rspcef |
⊢ ( ( 𝐻 ∈ 𝐾 ∧ 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ 𝐻 ) ‘ 𝑖 ) ) → ∃ ℎ ∈ 𝐾 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) |
| 44 |
36 37 43
|
syl2anc |
⊢ ( 𝜑 → ∃ ℎ ∈ 𝐾 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) |