Metamath Proof Explorer


Theorem opnvonmbllem2

Description: An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses opnvonmbllem2.x ( 𝜑𝑋 ∈ Fin )
opnvonmbllem2.n 𝑆 = dom ( voln ‘ 𝑋 )
opnvonmbllem2.g ( 𝜑𝐺 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) )
opnvonmbl.k 𝐾 = { ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ⊆ 𝐺 }
Assertion opnvonmbllem2 ( 𝜑𝐺𝑆 )

Proof

Step Hyp Ref Expression
1 opnvonmbllem2.x ( 𝜑𝑋 ∈ Fin )
2 opnvonmbllem2.n 𝑆 = dom ( voln ‘ 𝑋 )
3 opnvonmbllem2.g ( 𝜑𝐺 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) )
4 opnvonmbl.k 𝐾 = { ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ⊆ 𝐺 }
5 eqid ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( dist ‘ ( ℝ^ ‘ 𝑋 ) )
6 5 rrxmetfi ( 𝑋 ∈ Fin → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) )
7 1 6 syl ( 𝜑 → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) )
8 metxmet ( ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) )
9 7 8 syl ( 𝜑 → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) )
10 9 adantr ( ( 𝜑𝑥𝐺 ) → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) )
11 eqid ( ℝ^ ‘ 𝑋 ) = ( ℝ^ ‘ 𝑋 )
12 11 rrxval ( 𝑋 ∈ Fin → ( ℝ^ ‘ 𝑋 ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) )
13 1 12 syl ( 𝜑 → ( ℝ^ ‘ 𝑋 ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) )
14 13 fveq2d ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) )
15 ovex ( ℝfld freeLMod 𝑋 ) ∈ V
16 eqid ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) )
17 eqid ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) = ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) )
18 eqid ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) = ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) )
19 16 17 18 tcphtopn ( ( ℝfld freeLMod 𝑋 ) ∈ V → ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) = ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) ) )
20 15 19 ax-mp ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) = ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) )
21 20 a1i ( 𝜑 → ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) = ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) ) )
22 13 eqcomd ( 𝜑 → ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) = ( ℝ^ ‘ 𝑋 ) )
23 22 fveq2d ( 𝜑 → ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) = ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) )
24 23 fveq2d ( 𝜑 → ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) ) = ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) )
25 14 21 24 3eqtrd ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) )
26 3 25 eleqtrd ( 𝜑𝐺 ∈ ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) )
27 26 adantr ( ( 𝜑𝑥𝐺 ) → 𝐺 ∈ ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) )
28 simpr ( ( 𝜑𝑥𝐺 ) → 𝑥𝐺 )
29 eqid ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) = ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) )
30 29 mopni2 ( ( ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ∧ 𝐺 ∈ ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) ∧ 𝑥𝐺 ) → ∃ 𝑒 ∈ ℝ+ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 )
31 10 27 28 30 syl3anc ( ( 𝜑𝑥𝐺 ) → ∃ 𝑒 ∈ ℝ+ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 )
32 1 ad2antrr ( ( ( 𝜑𝑥𝐺 ) ∧ 𝑒 ∈ ℝ+ ) → 𝑋 ∈ Fin )
33 eqid ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )
34 33 rrxtoponfi ( 𝑋 ∈ Fin → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( TopOn ‘ ( ℝ ↑m 𝑋 ) ) )
35 1 34 syl ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( TopOn ‘ ( ℝ ↑m 𝑋 ) ) )
36 toponss ( ( ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( TopOn ‘ ( ℝ ↑m 𝑋 ) ) ∧ 𝐺 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) → 𝐺 ⊆ ( ℝ ↑m 𝑋 ) )
37 35 3 36 syl2anc ( 𝜑𝐺 ⊆ ( ℝ ↑m 𝑋 ) )
38 37 adantr ( ( 𝜑𝑥𝐺 ) → 𝐺 ⊆ ( ℝ ↑m 𝑋 ) )
39 38 28 sseldd ( ( 𝜑𝑥𝐺 ) → 𝑥 ∈ ( ℝ ↑m 𝑋 ) )
40 39 adantr ( ( ( 𝜑𝑥𝐺 ) ∧ 𝑒 ∈ ℝ+ ) → 𝑥 ∈ ( ℝ ↑m 𝑋 ) )
41 simpr ( ( ( 𝜑𝑥𝐺 ) ∧ 𝑒 ∈ ℝ+ ) → 𝑒 ∈ ℝ+ )
42 32 40 41 hoiqssbl ( ( ( 𝜑𝑥𝐺 ) ∧ 𝑒 ∈ ℝ+ ) → ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑥X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ∧ X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) )
43 42 3adant3 ( ( ( 𝜑𝑥𝐺 ) ∧ 𝑒 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) → ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑥X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ∧ X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) )
44 nfv 𝑖 ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 )
45 nfv 𝑖 ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) )
46 nfcv 𝑖 𝑥
47 nfixp1 𝑖 X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) )
48 46 47 nfel 𝑖 𝑥X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) )
49 nfcv 𝑖 ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )
50 47 49 nfss 𝑖 X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )
51 48 50 nfan 𝑖 ( 𝑥X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ∧ X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) )
52 44 45 51 nf3an 𝑖 ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) ∧ ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) ∧ ( 𝑥X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ∧ X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) )
53 1 adantr ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) → 𝑋 ∈ Fin )
54 53 3ad2ant1 ( ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) ∧ ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) ∧ ( 𝑥X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ∧ X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) → 𝑋 ∈ Fin )
55 elmapi ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) → 𝑐 : 𝑋 ⟶ ℚ )
56 55 adantr ( ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) → 𝑐 : 𝑋 ⟶ ℚ )
57 56 3ad2ant2 ( ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) ∧ ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) ∧ ( 𝑥X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ∧ X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) → 𝑐 : 𝑋 ⟶ ℚ )
58 elmapi ( 𝑑 ∈ ( ℚ ↑m 𝑋 ) → 𝑑 : 𝑋 ⟶ ℚ )
59 58 adantl ( ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) → 𝑑 : 𝑋 ⟶ ℚ )
60 59 3ad2ant2 ( ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) ∧ ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) ∧ ( 𝑥X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ∧ X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) → 𝑑 : 𝑋 ⟶ ℚ )
61 simp3r ( ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) ∧ ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) ∧ ( 𝑥X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ∧ X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) → X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) )
62 simp1r ( ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) ∧ ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) ∧ ( 𝑥X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ∧ X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) → ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 )
63 simp3l ( ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) ∧ ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) ∧ ( 𝑥X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ∧ X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) → 𝑥X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) )
64 eqid ( 𝑖𝑋 ↦ ⟨ ( 𝑐𝑖 ) , ( 𝑑𝑖 ) ⟩ ) = ( 𝑖𝑋 ↦ ⟨ ( 𝑐𝑖 ) , ( 𝑑𝑖 ) ⟩ )
65 52 54 57 60 61 62 63 4 64 opnvonmbllem1 ( ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) ∧ ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) ∧ ( 𝑥X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ∧ X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) → ∃ 𝐾 𝑥X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) )
66 65 3exp ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) → ( ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) → ( ( 𝑥X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ∧ X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) → ∃ 𝐾 𝑥X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ) ) )
67 66 adantlr ( ( ( 𝜑𝑥𝐺 ) ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) → ( ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) → ( ( 𝑥X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ∧ X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) → ∃ 𝐾 𝑥X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ) ) )
68 67 3adant2 ( ( ( 𝜑𝑥𝐺 ) ∧ 𝑒 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) → ( ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) → ( ( 𝑥X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ∧ X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) → ∃ 𝐾 𝑥X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ) ) )
69 68 rexlimdvv ( ( ( 𝜑𝑥𝐺 ) ∧ 𝑒 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) → ( ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑥X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ∧ X 𝑖𝑋 ( ( 𝑐𝑖 ) [,) ( 𝑑𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) → ∃ 𝐾 𝑥X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ) )
70 43 69 mpd ( ( ( 𝜑𝑥𝐺 ) ∧ 𝑒 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) → ∃ 𝐾 𝑥X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) )
71 70 3exp ( ( 𝜑𝑥𝐺 ) → ( 𝑒 ∈ ℝ+ → ( ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 → ∃ 𝐾 𝑥X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ) ) )
72 71 rexlimdv ( ( 𝜑𝑥𝐺 ) → ( ∃ 𝑒 ∈ ℝ+ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 → ∃ 𝐾 𝑥X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ) )
73 31 72 mpd ( ( 𝜑𝑥𝐺 ) → ∃ 𝐾 𝑥X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) )
74 eliun ( 𝑥 𝐾 X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ↔ ∃ 𝐾 𝑥X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) )
75 73 74 sylibr ( ( 𝜑𝑥𝐺 ) → 𝑥 𝐾 X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) )
76 75 ralrimiva ( 𝜑 → ∀ 𝑥𝐺 𝑥 𝐾 X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) )
77 dfss3 ( 𝐺 𝐾 X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ↔ ∀ 𝑥𝐺 𝑥 𝐾 X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) )
78 76 77 sylibr ( 𝜑𝐺 𝐾 X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) )
79 4 eleq2i ( 𝐾 ∈ { ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ⊆ 𝐺 } )
80 79 biimpi ( 𝐾 ∈ { ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ⊆ 𝐺 } )
81 80 adantl ( ( 𝜑𝐾 ) → ∈ { ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ⊆ 𝐺 } )
82 rabid ( ∈ { ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ⊆ 𝐺 } ↔ ( ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∧ X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ⊆ 𝐺 ) )
83 81 82 sylib ( ( 𝜑𝐾 ) → ( ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∧ X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ⊆ 𝐺 ) )
84 83 simprd ( ( 𝜑𝐾 ) → X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ⊆ 𝐺 )
85 84 ralrimiva ( 𝜑 → ∀ 𝐾 X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ⊆ 𝐺 )
86 iunss ( 𝐾 X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ⊆ 𝐺 ↔ ∀ 𝐾 X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ⊆ 𝐺 )
87 85 86 sylibr ( 𝜑 𝐾 X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ⊆ 𝐺 )
88 78 87 eqssd ( 𝜑𝐺 = 𝐾 X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) )
89 1 2 dmovnsal ( 𝜑𝑆 ∈ SAlg )
90 ssrab2 { ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ⊆ 𝐺 } ⊆ ( ( ℚ × ℚ ) ↑m 𝑋 )
91 4 90 eqsstri 𝐾 ⊆ ( ( ℚ × ℚ ) ↑m 𝑋 )
92 91 a1i ( 𝜑𝐾 ⊆ ( ( ℚ × ℚ ) ↑m 𝑋 ) )
93 qct ℚ ≼ ω
94 93 a1i ( 𝜑 → ℚ ≼ ω )
95 xpct ( ( ℚ ≼ ω ∧ ℚ ≼ ω ) → ( ℚ × ℚ ) ≼ ω )
96 94 94 95 syl2anc ( 𝜑 → ( ℚ × ℚ ) ≼ ω )
97 96 1 mpct ( 𝜑 → ( ( ℚ × ℚ ) ↑m 𝑋 ) ≼ ω )
98 ssct ( ( 𝐾 ⊆ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∧ ( ( ℚ × ℚ ) ↑m 𝑋 ) ≼ ω ) → 𝐾 ≼ ω )
99 92 97 98 syl2anc ( 𝜑𝐾 ≼ ω )
100 reex ℝ ∈ V
101 100 100 xpex ( ℝ × ℝ ) ∈ V
102 qssre ℚ ⊆ ℝ
103 xpss12 ( ( ℚ ⊆ ℝ ∧ ℚ ⊆ ℝ ) → ( ℚ × ℚ ) ⊆ ( ℝ × ℝ ) )
104 102 102 103 mp2an ( ℚ × ℚ ) ⊆ ( ℝ × ℝ )
105 mapss ( ( ( ℝ × ℝ ) ∈ V ∧ ( ℚ × ℚ ) ⊆ ( ℝ × ℝ ) ) → ( ( ℚ × ℚ ) ↑m 𝑋 ) ⊆ ( ( ℝ × ℝ ) ↑m 𝑋 ) )
106 101 104 105 mp2an ( ( ℚ × ℚ ) ↑m 𝑋 ) ⊆ ( ( ℝ × ℝ ) ↑m 𝑋 )
107 91 sseli ( 𝐾 ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) )
108 106 107 sselid ( 𝐾 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) )
109 elmapi ( ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) → : 𝑋 ⟶ ( ℝ × ℝ ) )
110 108 109 syl ( 𝐾 : 𝑋 ⟶ ( ℝ × ℝ ) )
111 110 adantl ( ( 𝜑𝐾 ) → : 𝑋 ⟶ ( ℝ × ℝ ) )
112 2fveq3 ( 𝑘 = 𝑖 → ( 1st ‘ ( 𝑘 ) ) = ( 1st ‘ ( 𝑖 ) ) )
113 112 cbvmptv ( 𝑘𝑋 ↦ ( 1st ‘ ( 𝑘 ) ) ) = ( 𝑖𝑋 ↦ ( 1st ‘ ( 𝑖 ) ) )
114 2fveq3 ( 𝑘 = 𝑖 → ( 2nd ‘ ( 𝑘 ) ) = ( 2nd ‘ ( 𝑖 ) ) )
115 114 cbvmptv ( 𝑘𝑋 ↦ ( 2nd ‘ ( 𝑘 ) ) ) = ( 𝑖𝑋 ↦ ( 2nd ‘ ( 𝑖 ) ) )
116 111 113 115 hoicoto2 ( ( 𝜑𝐾 ) → X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) = X 𝑖𝑋 ( ( ( 𝑘𝑋 ↦ ( 1st ‘ ( 𝑘 ) ) ) ‘ 𝑖 ) [,) ( ( 𝑘𝑋 ↦ ( 2nd ‘ ( 𝑘 ) ) ) ‘ 𝑖 ) ) )
117 1 adantr ( ( 𝜑𝐾 ) → 𝑋 ∈ Fin )
118 111 ffvelrnda ( ( ( 𝜑𝐾 ) ∧ 𝑘𝑋 ) → ( 𝑘 ) ∈ ( ℝ × ℝ ) )
119 xp1st ( ( 𝑘 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( 𝑘 ) ) ∈ ℝ )
120 118 119 syl ( ( ( 𝜑𝐾 ) ∧ 𝑘𝑋 ) → ( 1st ‘ ( 𝑘 ) ) ∈ ℝ )
121 120 fmpttd ( ( 𝜑𝐾 ) → ( 𝑘𝑋 ↦ ( 1st ‘ ( 𝑘 ) ) ) : 𝑋 ⟶ ℝ )
122 xp2nd ( ( 𝑘 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( 𝑘 ) ) ∈ ℝ )
123 118 122 syl ( ( ( 𝜑𝐾 ) ∧ 𝑘𝑋 ) → ( 2nd ‘ ( 𝑘 ) ) ∈ ℝ )
124 123 fmpttd ( ( 𝜑𝐾 ) → ( 𝑘𝑋 ↦ ( 2nd ‘ ( 𝑘 ) ) ) : 𝑋 ⟶ ℝ )
125 117 2 121 124 hoimbl ( ( 𝜑𝐾 ) → X 𝑖𝑋 ( ( ( 𝑘𝑋 ↦ ( 1st ‘ ( 𝑘 ) ) ) ‘ 𝑖 ) [,) ( ( 𝑘𝑋 ↦ ( 2nd ‘ ( 𝑘 ) ) ) ‘ 𝑖 ) ) ∈ 𝑆 )
126 116 125 eqeltrd ( ( 𝜑𝐾 ) → X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ∈ 𝑆 )
127 89 99 126 saliuncl ( 𝜑 𝐾 X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ∈ 𝑆 )
128 88 127 eqeltrd ( 𝜑𝐺𝑆 )