| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opnvonmbllem2.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 2 |  | opnvonmbllem2.n | ⊢ 𝑆  =  dom  ( voln ‘ 𝑋 ) | 
						
							| 3 |  | opnvonmbllem2.g | ⊢ ( 𝜑  →  𝐺  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) | 
						
							| 4 |  | opnvonmbl.k | ⊢ 𝐾  =  { ℎ  ∈  ( ( ℚ  ×  ℚ )  ↑m  𝑋 )  ∣  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 )  ⊆  𝐺 } | 
						
							| 5 |  | eqid | ⊢ ( dist ‘ ( ℝ^ ‘ 𝑋 ) )  =  ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) | 
						
							| 6 | 5 | rrxmetfi | ⊢ ( 𝑋  ∈  Fin  →  ( dist ‘ ( ℝ^ ‘ 𝑋 ) )  ∈  ( Met ‘ ( ℝ  ↑m  𝑋 ) ) ) | 
						
							| 7 | 1 6 | syl | ⊢ ( 𝜑  →  ( dist ‘ ( ℝ^ ‘ 𝑋 ) )  ∈  ( Met ‘ ( ℝ  ↑m  𝑋 ) ) ) | 
						
							| 8 |  | metxmet | ⊢ ( ( dist ‘ ( ℝ^ ‘ 𝑋 ) )  ∈  ( Met ‘ ( ℝ  ↑m  𝑋 ) )  →  ( dist ‘ ( ℝ^ ‘ 𝑋 ) )  ∈  ( ∞Met ‘ ( ℝ  ↑m  𝑋 ) ) ) | 
						
							| 9 | 7 8 | syl | ⊢ ( 𝜑  →  ( dist ‘ ( ℝ^ ‘ 𝑋 ) )  ∈  ( ∞Met ‘ ( ℝ  ↑m  𝑋 ) ) ) | 
						
							| 10 | 9 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  →  ( dist ‘ ( ℝ^ ‘ 𝑋 ) )  ∈  ( ∞Met ‘ ( ℝ  ↑m  𝑋 ) ) ) | 
						
							| 11 |  | eqid | ⊢ ( ℝ^ ‘ 𝑋 )  =  ( ℝ^ ‘ 𝑋 ) | 
						
							| 12 | 11 | rrxval | ⊢ ( 𝑋  ∈  Fin  →  ( ℝ^ ‘ 𝑋 )  =  ( toℂPreHil ‘ ( ℝfld  freeLMod  𝑋 ) ) ) | 
						
							| 13 | 1 12 | syl | ⊢ ( 𝜑  →  ( ℝ^ ‘ 𝑋 )  =  ( toℂPreHil ‘ ( ℝfld  freeLMod  𝑋 ) ) ) | 
						
							| 14 | 13 | fveq2d | ⊢ ( 𝜑  →  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  =  ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld  freeLMod  𝑋 ) ) ) ) | 
						
							| 15 |  | ovex | ⊢ ( ℝfld  freeLMod  𝑋 )  ∈  V | 
						
							| 16 |  | eqid | ⊢ ( toℂPreHil ‘ ( ℝfld  freeLMod  𝑋 ) )  =  ( toℂPreHil ‘ ( ℝfld  freeLMod  𝑋 ) ) | 
						
							| 17 |  | eqid | ⊢ ( dist ‘ ( toℂPreHil ‘ ( ℝfld  freeLMod  𝑋 ) ) )  =  ( dist ‘ ( toℂPreHil ‘ ( ℝfld  freeLMod  𝑋 ) ) ) | 
						
							| 18 |  | eqid | ⊢ ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld  freeLMod  𝑋 ) ) )  =  ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld  freeLMod  𝑋 ) ) ) | 
						
							| 19 | 16 17 18 | tcphtopn | ⊢ ( ( ℝfld  freeLMod  𝑋 )  ∈  V  →  ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld  freeLMod  𝑋 ) ) )  =  ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld  freeLMod  𝑋 ) ) ) ) ) | 
						
							| 20 | 15 19 | ax-mp | ⊢ ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld  freeLMod  𝑋 ) ) )  =  ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld  freeLMod  𝑋 ) ) ) ) | 
						
							| 21 | 20 | a1i | ⊢ ( 𝜑  →  ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld  freeLMod  𝑋 ) ) )  =  ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld  freeLMod  𝑋 ) ) ) ) ) | 
						
							| 22 | 13 | eqcomd | ⊢ ( 𝜑  →  ( toℂPreHil ‘ ( ℝfld  freeLMod  𝑋 ) )  =  ( ℝ^ ‘ 𝑋 ) ) | 
						
							| 23 | 22 | fveq2d | ⊢ ( 𝜑  →  ( dist ‘ ( toℂPreHil ‘ ( ℝfld  freeLMod  𝑋 ) ) )  =  ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) | 
						
							| 24 | 23 | fveq2d | ⊢ ( 𝜑  →  ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld  freeLMod  𝑋 ) ) ) )  =  ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) ) | 
						
							| 25 | 14 21 24 | 3eqtrd | ⊢ ( 𝜑  →  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  =  ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) ) | 
						
							| 26 | 3 25 | eleqtrd | ⊢ ( 𝜑  →  𝐺  ∈  ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) ) | 
						
							| 27 | 26 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  →  𝐺  ∈  ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) ) | 
						
							| 28 |  | simpr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  →  𝑥  ∈  𝐺 ) | 
						
							| 29 |  | eqid | ⊢ ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) )  =  ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) | 
						
							| 30 | 29 | mopni2 | ⊢ ( ( ( dist ‘ ( ℝ^ ‘ 𝑋 ) )  ∈  ( ∞Met ‘ ( ℝ  ↑m  𝑋 ) )  ∧  𝐺  ∈  ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) )  ∧  𝑥  ∈  𝐺 )  →  ∃ 𝑒  ∈  ℝ+ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 ) | 
						
							| 31 | 10 27 28 30 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  →  ∃ 𝑒  ∈  ℝ+ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 ) | 
						
							| 32 | 1 | ad2antrr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  ∧  𝑒  ∈  ℝ+ )  →  𝑋  ∈  Fin ) | 
						
							| 33 |  | eqid | ⊢ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  =  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) | 
						
							| 34 | 33 | rrxtoponfi | ⊢ ( 𝑋  ∈  Fin  →  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  ∈  ( TopOn ‘ ( ℝ  ↑m  𝑋 ) ) ) | 
						
							| 35 | 1 34 | syl | ⊢ ( 𝜑  →  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  ∈  ( TopOn ‘ ( ℝ  ↑m  𝑋 ) ) ) | 
						
							| 36 |  | toponss | ⊢ ( ( ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) )  ∈  ( TopOn ‘ ( ℝ  ↑m  𝑋 ) )  ∧  𝐺  ∈  ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) )  →  𝐺  ⊆  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 37 | 35 3 36 | syl2anc | ⊢ ( 𝜑  →  𝐺  ⊆  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 38 | 37 | adantr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  →  𝐺  ⊆  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 39 | 38 28 | sseldd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  →  𝑥  ∈  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 40 | 39 | adantr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  ∧  𝑒  ∈  ℝ+ )  →  𝑥  ∈  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 41 |  | simpr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  ∧  𝑒  ∈  ℝ+ )  →  𝑒  ∈  ℝ+ ) | 
						
							| 42 | 32 40 41 | hoiqssbl | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  ∧  𝑒  ∈  ℝ+ )  →  ∃ 𝑐  ∈  ( ℚ  ↑m  𝑋 ) ∃ 𝑑  ∈  ( ℚ  ↑m  𝑋 ) ( 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) | 
						
							| 43 | 42 | 3adant3 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  ∧  𝑒  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 )  →  ∃ 𝑐  ∈  ( ℚ  ↑m  𝑋 ) ∃ 𝑑  ∈  ( ℚ  ↑m  𝑋 ) ( 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) | 
						
							| 44 |  | nfv | ⊢ Ⅎ 𝑖 ( 𝜑  ∧  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 ) | 
						
							| 45 |  | nfv | ⊢ Ⅎ 𝑖 ( 𝑐  ∈  ( ℚ  ↑m  𝑋 )  ∧  𝑑  ∈  ( ℚ  ↑m  𝑋 ) ) | 
						
							| 46 |  | nfcv | ⊢ Ⅎ 𝑖 𝑥 | 
						
							| 47 |  | nfixp1 | ⊢ Ⅎ 𝑖 X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) | 
						
							| 48 | 46 47 | nfel | ⊢ Ⅎ 𝑖 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) | 
						
							| 49 |  | nfcv | ⊢ Ⅎ 𝑖 ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) | 
						
							| 50 | 47 49 | nfss | ⊢ Ⅎ 𝑖 X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) | 
						
							| 51 | 48 50 | nfan | ⊢ Ⅎ 𝑖 ( 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) | 
						
							| 52 | 44 45 51 | nf3an | ⊢ Ⅎ 𝑖 ( ( 𝜑  ∧  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 )  ∧  ( 𝑐  ∈  ( ℚ  ↑m  𝑋 )  ∧  𝑑  ∈  ( ℚ  ↑m  𝑋 ) )  ∧  ( 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) | 
						
							| 53 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 )  →  𝑋  ∈  Fin ) | 
						
							| 54 | 53 | 3ad2ant1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 )  ∧  ( 𝑐  ∈  ( ℚ  ↑m  𝑋 )  ∧  𝑑  ∈  ( ℚ  ↑m  𝑋 ) )  ∧  ( 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) )  →  𝑋  ∈  Fin ) | 
						
							| 55 |  | elmapi | ⊢ ( 𝑐  ∈  ( ℚ  ↑m  𝑋 )  →  𝑐 : 𝑋 ⟶ ℚ ) | 
						
							| 56 | 55 | adantr | ⊢ ( ( 𝑐  ∈  ( ℚ  ↑m  𝑋 )  ∧  𝑑  ∈  ( ℚ  ↑m  𝑋 ) )  →  𝑐 : 𝑋 ⟶ ℚ ) | 
						
							| 57 | 56 | 3ad2ant2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 )  ∧  ( 𝑐  ∈  ( ℚ  ↑m  𝑋 )  ∧  𝑑  ∈  ( ℚ  ↑m  𝑋 ) )  ∧  ( 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) )  →  𝑐 : 𝑋 ⟶ ℚ ) | 
						
							| 58 |  | elmapi | ⊢ ( 𝑑  ∈  ( ℚ  ↑m  𝑋 )  →  𝑑 : 𝑋 ⟶ ℚ ) | 
						
							| 59 | 58 | adantl | ⊢ ( ( 𝑐  ∈  ( ℚ  ↑m  𝑋 )  ∧  𝑑  ∈  ( ℚ  ↑m  𝑋 ) )  →  𝑑 : 𝑋 ⟶ ℚ ) | 
						
							| 60 | 59 | 3ad2ant2 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 )  ∧  ( 𝑐  ∈  ( ℚ  ↑m  𝑋 )  ∧  𝑑  ∈  ( ℚ  ↑m  𝑋 ) )  ∧  ( 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) )  →  𝑑 : 𝑋 ⟶ ℚ ) | 
						
							| 61 |  | simp3r | ⊢ ( ( ( 𝜑  ∧  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 )  ∧  ( 𝑐  ∈  ( ℚ  ↑m  𝑋 )  ∧  𝑑  ∈  ( ℚ  ↑m  𝑋 ) )  ∧  ( 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) )  →  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) | 
						
							| 62 |  | simp1r | ⊢ ( ( ( 𝜑  ∧  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 )  ∧  ( 𝑐  ∈  ( ℚ  ↑m  𝑋 )  ∧  𝑑  ∈  ( ℚ  ↑m  𝑋 ) )  ∧  ( 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) )  →  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 ) | 
						
							| 63 |  | simp3l | ⊢ ( ( ( 𝜑  ∧  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 )  ∧  ( 𝑐  ∈  ( ℚ  ↑m  𝑋 )  ∧  𝑑  ∈  ( ℚ  ↑m  𝑋 ) )  ∧  ( 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) )  →  𝑥  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ) | 
						
							| 64 |  | eqid | ⊢ ( 𝑖  ∈  𝑋  ↦  〈 ( 𝑐 ‘ 𝑖 ) ,  ( 𝑑 ‘ 𝑖 ) 〉 )  =  ( 𝑖  ∈  𝑋  ↦  〈 ( 𝑐 ‘ 𝑖 ) ,  ( 𝑑 ‘ 𝑖 ) 〉 ) | 
						
							| 65 | 52 54 57 60 61 62 63 4 64 | opnvonmbllem1 | ⊢ ( ( ( 𝜑  ∧  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 )  ∧  ( 𝑐  ∈  ( ℚ  ↑m  𝑋 )  ∧  𝑑  ∈  ( ℚ  ↑m  𝑋 ) )  ∧  ( 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) )  →  ∃ ℎ  ∈  𝐾 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 ) ) | 
						
							| 66 | 65 | 3exp | ⊢ ( ( 𝜑  ∧  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 )  →  ( ( 𝑐  ∈  ( ℚ  ↑m  𝑋 )  ∧  𝑑  ∈  ( ℚ  ↑m  𝑋 ) )  →  ( ( 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) )  →  ∃ ℎ  ∈  𝐾 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 ) ) ) ) | 
						
							| 67 | 66 | adantlr | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  ∧  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 )  →  ( ( 𝑐  ∈  ( ℚ  ↑m  𝑋 )  ∧  𝑑  ∈  ( ℚ  ↑m  𝑋 ) )  →  ( ( 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) )  →  ∃ ℎ  ∈  𝐾 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 ) ) ) ) | 
						
							| 68 | 67 | 3adant2 | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  ∧  𝑒  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 )  →  ( ( 𝑐  ∈  ( ℚ  ↑m  𝑋 )  ∧  𝑑  ∈  ( ℚ  ↑m  𝑋 ) )  →  ( ( 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) )  →  ∃ ℎ  ∈  𝐾 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 ) ) ) ) | 
						
							| 69 | 68 | rexlimdvv | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  ∧  𝑒  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 )  →  ( ∃ 𝑐  ∈  ( ℚ  ↑m  𝑋 ) ∃ 𝑑  ∈  ( ℚ  ↑m  𝑋 ) ( 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) )  →  ∃ ℎ  ∈  𝐾 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 ) ) ) | 
						
							| 70 | 43 69 | mpd | ⊢ ( ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  ∧  𝑒  ∈  ℝ+  ∧  ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺 )  →  ∃ ℎ  ∈  𝐾 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 ) ) | 
						
							| 71 | 70 | 3exp | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  →  ( 𝑒  ∈  ℝ+  →  ( ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺  →  ∃ ℎ  ∈  𝐾 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 ) ) ) ) | 
						
							| 72 | 71 | rexlimdv | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  →  ( ∃ 𝑒  ∈  ℝ+ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 )  ⊆  𝐺  →  ∃ ℎ  ∈  𝐾 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 ) ) ) | 
						
							| 73 | 31 72 | mpd | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  →  ∃ ℎ  ∈  𝐾 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 ) ) | 
						
							| 74 |  | eliun | ⊢ ( 𝑥  ∈  ∪  ℎ  ∈  𝐾 X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 )  ↔  ∃ ℎ  ∈  𝐾 𝑥  ∈  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 ) ) | 
						
							| 75 | 73 74 | sylibr | ⊢ ( ( 𝜑  ∧  𝑥  ∈  𝐺 )  →  𝑥  ∈  ∪  ℎ  ∈  𝐾 X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 ) ) | 
						
							| 76 | 75 | ralrimiva | ⊢ ( 𝜑  →  ∀ 𝑥  ∈  𝐺 𝑥  ∈  ∪  ℎ  ∈  𝐾 X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 ) ) | 
						
							| 77 |  | dfss3 | ⊢ ( 𝐺  ⊆  ∪  ℎ  ∈  𝐾 X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 )  ↔  ∀ 𝑥  ∈  𝐺 𝑥  ∈  ∪  ℎ  ∈  𝐾 X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 ) ) | 
						
							| 78 | 76 77 | sylibr | ⊢ ( 𝜑  →  𝐺  ⊆  ∪  ℎ  ∈  𝐾 X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 ) ) | 
						
							| 79 | 4 | eleq2i | ⊢ ( ℎ  ∈  𝐾  ↔  ℎ  ∈  { ℎ  ∈  ( ( ℚ  ×  ℚ )  ↑m  𝑋 )  ∣  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 )  ⊆  𝐺 } ) | 
						
							| 80 | 79 | biimpi | ⊢ ( ℎ  ∈  𝐾  →  ℎ  ∈  { ℎ  ∈  ( ( ℚ  ×  ℚ )  ↑m  𝑋 )  ∣  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 )  ⊆  𝐺 } ) | 
						
							| 81 | 80 | adantl | ⊢ ( ( 𝜑  ∧  ℎ  ∈  𝐾 )  →  ℎ  ∈  { ℎ  ∈  ( ( ℚ  ×  ℚ )  ↑m  𝑋 )  ∣  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 )  ⊆  𝐺 } ) | 
						
							| 82 |  | rabid | ⊢ ( ℎ  ∈  { ℎ  ∈  ( ( ℚ  ×  ℚ )  ↑m  𝑋 )  ∣  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 )  ⊆  𝐺 }  ↔  ( ℎ  ∈  ( ( ℚ  ×  ℚ )  ↑m  𝑋 )  ∧  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 )  ⊆  𝐺 ) ) | 
						
							| 83 | 81 82 | sylib | ⊢ ( ( 𝜑  ∧  ℎ  ∈  𝐾 )  →  ( ℎ  ∈  ( ( ℚ  ×  ℚ )  ↑m  𝑋 )  ∧  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 )  ⊆  𝐺 ) ) | 
						
							| 84 | 83 | simprd | ⊢ ( ( 𝜑  ∧  ℎ  ∈  𝐾 )  →  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 )  ⊆  𝐺 ) | 
						
							| 85 | 84 | ralrimiva | ⊢ ( 𝜑  →  ∀ ℎ  ∈  𝐾 X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 )  ⊆  𝐺 ) | 
						
							| 86 |  | iunss | ⊢ ( ∪  ℎ  ∈  𝐾 X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 )  ⊆  𝐺  ↔  ∀ ℎ  ∈  𝐾 X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 )  ⊆  𝐺 ) | 
						
							| 87 | 85 86 | sylibr | ⊢ ( 𝜑  →  ∪  ℎ  ∈  𝐾 X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 )  ⊆  𝐺 ) | 
						
							| 88 | 78 87 | eqssd | ⊢ ( 𝜑  →  𝐺  =  ∪  ℎ  ∈  𝐾 X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 ) ) | 
						
							| 89 | 1 2 | dmovnsal | ⊢ ( 𝜑  →  𝑆  ∈  SAlg ) | 
						
							| 90 |  | ssrab2 | ⊢ { ℎ  ∈  ( ( ℚ  ×  ℚ )  ↑m  𝑋 )  ∣  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 )  ⊆  𝐺 }  ⊆  ( ( ℚ  ×  ℚ )  ↑m  𝑋 ) | 
						
							| 91 | 4 90 | eqsstri | ⊢ 𝐾  ⊆  ( ( ℚ  ×  ℚ )  ↑m  𝑋 ) | 
						
							| 92 | 91 | a1i | ⊢ ( 𝜑  →  𝐾  ⊆  ( ( ℚ  ×  ℚ )  ↑m  𝑋 ) ) | 
						
							| 93 |  | qct | ⊢ ℚ  ≼  ω | 
						
							| 94 | 93 | a1i | ⊢ ( 𝜑  →  ℚ  ≼  ω ) | 
						
							| 95 |  | xpct | ⊢ ( ( ℚ  ≼  ω  ∧  ℚ  ≼  ω )  →  ( ℚ  ×  ℚ )  ≼  ω ) | 
						
							| 96 | 94 94 95 | syl2anc | ⊢ ( 𝜑  →  ( ℚ  ×  ℚ )  ≼  ω ) | 
						
							| 97 | 96 1 | mpct | ⊢ ( 𝜑  →  ( ( ℚ  ×  ℚ )  ↑m  𝑋 )  ≼  ω ) | 
						
							| 98 |  | ssct | ⊢ ( ( 𝐾  ⊆  ( ( ℚ  ×  ℚ )  ↑m  𝑋 )  ∧  ( ( ℚ  ×  ℚ )  ↑m  𝑋 )  ≼  ω )  →  𝐾  ≼  ω ) | 
						
							| 99 | 92 97 98 | syl2anc | ⊢ ( 𝜑  →  𝐾  ≼  ω ) | 
						
							| 100 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 101 | 100 100 | xpex | ⊢ ( ℝ  ×  ℝ )  ∈  V | 
						
							| 102 |  | qssre | ⊢ ℚ  ⊆  ℝ | 
						
							| 103 |  | xpss12 | ⊢ ( ( ℚ  ⊆  ℝ  ∧  ℚ  ⊆  ℝ )  →  ( ℚ  ×  ℚ )  ⊆  ( ℝ  ×  ℝ ) ) | 
						
							| 104 | 102 102 103 | mp2an | ⊢ ( ℚ  ×  ℚ )  ⊆  ( ℝ  ×  ℝ ) | 
						
							| 105 |  | mapss | ⊢ ( ( ( ℝ  ×  ℝ )  ∈  V  ∧  ( ℚ  ×  ℚ )  ⊆  ( ℝ  ×  ℝ ) )  →  ( ( ℚ  ×  ℚ )  ↑m  𝑋 )  ⊆  ( ( ℝ  ×  ℝ )  ↑m  𝑋 ) ) | 
						
							| 106 | 101 104 105 | mp2an | ⊢ ( ( ℚ  ×  ℚ )  ↑m  𝑋 )  ⊆  ( ( ℝ  ×  ℝ )  ↑m  𝑋 ) | 
						
							| 107 | 91 | sseli | ⊢ ( ℎ  ∈  𝐾  →  ℎ  ∈  ( ( ℚ  ×  ℚ )  ↑m  𝑋 ) ) | 
						
							| 108 | 106 107 | sselid | ⊢ ( ℎ  ∈  𝐾  →  ℎ  ∈  ( ( ℝ  ×  ℝ )  ↑m  𝑋 ) ) | 
						
							| 109 |  | elmapi | ⊢ ( ℎ  ∈  ( ( ℝ  ×  ℝ )  ↑m  𝑋 )  →  ℎ : 𝑋 ⟶ ( ℝ  ×  ℝ ) ) | 
						
							| 110 | 108 109 | syl | ⊢ ( ℎ  ∈  𝐾  →  ℎ : 𝑋 ⟶ ( ℝ  ×  ℝ ) ) | 
						
							| 111 | 110 | adantl | ⊢ ( ( 𝜑  ∧  ℎ  ∈  𝐾 )  →  ℎ : 𝑋 ⟶ ( ℝ  ×  ℝ ) ) | 
						
							| 112 |  | 2fveq3 | ⊢ ( 𝑘  =  𝑖  →  ( 1st  ‘ ( ℎ ‘ 𝑘 ) )  =  ( 1st  ‘ ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 113 | 112 | cbvmptv | ⊢ ( 𝑘  ∈  𝑋  ↦  ( 1st  ‘ ( ℎ ‘ 𝑘 ) ) )  =  ( 𝑖  ∈  𝑋  ↦  ( 1st  ‘ ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 114 |  | 2fveq3 | ⊢ ( 𝑘  =  𝑖  →  ( 2nd  ‘ ( ℎ ‘ 𝑘 ) )  =  ( 2nd  ‘ ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 115 | 114 | cbvmptv | ⊢ ( 𝑘  ∈  𝑋  ↦  ( 2nd  ‘ ( ℎ ‘ 𝑘 ) ) )  =  ( 𝑖  ∈  𝑋  ↦  ( 2nd  ‘ ( ℎ ‘ 𝑖 ) ) ) | 
						
							| 116 | 111 113 115 | hoicoto2 | ⊢ ( ( 𝜑  ∧  ℎ  ∈  𝐾 )  →  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 )  =  X 𝑖  ∈  𝑋 ( ( ( 𝑘  ∈  𝑋  ↦  ( 1st  ‘ ( ℎ ‘ 𝑘 ) ) ) ‘ 𝑖 ) [,) ( ( 𝑘  ∈  𝑋  ↦  ( 2nd  ‘ ( ℎ ‘ 𝑘 ) ) ) ‘ 𝑖 ) ) ) | 
						
							| 117 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ℎ  ∈  𝐾 )  →  𝑋  ∈  Fin ) | 
						
							| 118 | 111 | ffvelcdmda | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  𝐾 )  ∧  𝑘  ∈  𝑋 )  →  ( ℎ ‘ 𝑘 )  ∈  ( ℝ  ×  ℝ ) ) | 
						
							| 119 |  | xp1st | ⊢ ( ( ℎ ‘ 𝑘 )  ∈  ( ℝ  ×  ℝ )  →  ( 1st  ‘ ( ℎ ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 120 | 118 119 | syl | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  𝐾 )  ∧  𝑘  ∈  𝑋 )  →  ( 1st  ‘ ( ℎ ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 121 | 120 | fmpttd | ⊢ ( ( 𝜑  ∧  ℎ  ∈  𝐾 )  →  ( 𝑘  ∈  𝑋  ↦  ( 1st  ‘ ( ℎ ‘ 𝑘 ) ) ) : 𝑋 ⟶ ℝ ) | 
						
							| 122 |  | xp2nd | ⊢ ( ( ℎ ‘ 𝑘 )  ∈  ( ℝ  ×  ℝ )  →  ( 2nd  ‘ ( ℎ ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 123 | 118 122 | syl | ⊢ ( ( ( 𝜑  ∧  ℎ  ∈  𝐾 )  ∧  𝑘  ∈  𝑋 )  →  ( 2nd  ‘ ( ℎ ‘ 𝑘 ) )  ∈  ℝ ) | 
						
							| 124 | 123 | fmpttd | ⊢ ( ( 𝜑  ∧  ℎ  ∈  𝐾 )  →  ( 𝑘  ∈  𝑋  ↦  ( 2nd  ‘ ( ℎ ‘ 𝑘 ) ) ) : 𝑋 ⟶ ℝ ) | 
						
							| 125 | 117 2 121 124 | hoimbl | ⊢ ( ( 𝜑  ∧  ℎ  ∈  𝐾 )  →  X 𝑖  ∈  𝑋 ( ( ( 𝑘  ∈  𝑋  ↦  ( 1st  ‘ ( ℎ ‘ 𝑘 ) ) ) ‘ 𝑖 ) [,) ( ( 𝑘  ∈  𝑋  ↦  ( 2nd  ‘ ( ℎ ‘ 𝑘 ) ) ) ‘ 𝑖 ) )  ∈  𝑆 ) | 
						
							| 126 | 116 125 | eqeltrd | ⊢ ( ( 𝜑  ∧  ℎ  ∈  𝐾 )  →  X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 )  ∈  𝑆 ) | 
						
							| 127 | 89 99 126 | saliuncl | ⊢ ( 𝜑  →  ∪  ℎ  ∈  𝐾 X 𝑖  ∈  𝑋 ( ( [,)  ∘  ℎ ) ‘ 𝑖 )  ∈  𝑆 ) | 
						
							| 128 | 88 127 | eqeltrd | ⊢ ( 𝜑  →  𝐺  ∈  𝑆 ) |