Step |
Hyp |
Ref |
Expression |
1 |
|
opnvonmbllem2.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
opnvonmbllem2.n |
⊢ 𝑆 = dom ( voln ‘ 𝑋 ) |
3 |
|
opnvonmbllem2.g |
⊢ ( 𝜑 → 𝐺 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) |
4 |
|
opnvonmbl.k |
⊢ 𝐾 = { ℎ ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ⊆ 𝐺 } |
5 |
|
eqid |
⊢ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) |
6 |
5
|
rrxmetfi |
⊢ ( 𝑋 ∈ Fin → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
7 |
1 6
|
syl |
⊢ ( 𝜑 → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
8 |
|
metxmet |
⊢ ( ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( Met ‘ ( ℝ ↑m 𝑋 ) ) → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
9 |
7 8
|
syl |
⊢ ( 𝜑 → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
10 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ) |
11 |
|
eqid |
⊢ ( ℝ^ ‘ 𝑋 ) = ( ℝ^ ‘ 𝑋 ) |
12 |
11
|
rrxval |
⊢ ( 𝑋 ∈ Fin → ( ℝ^ ‘ 𝑋 ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) |
13 |
1 12
|
syl |
⊢ ( 𝜑 → ( ℝ^ ‘ 𝑋 ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) |
14 |
13
|
fveq2d |
⊢ ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) ) |
15 |
|
ovex |
⊢ ( ℝfld freeLMod 𝑋 ) ∈ V |
16 |
|
eqid |
⊢ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) = ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) |
17 |
|
eqid |
⊢ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) = ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) |
18 |
|
eqid |
⊢ ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) = ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) |
19 |
16 17 18
|
tcphtopn |
⊢ ( ( ℝfld freeLMod 𝑋 ) ∈ V → ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) = ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) ) ) |
20 |
15 19
|
ax-mp |
⊢ ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) = ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) ) |
21 |
20
|
a1i |
⊢ ( 𝜑 → ( TopOpen ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) = ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) ) ) |
22 |
13
|
eqcomd |
⊢ ( 𝜑 → ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) = ( ℝ^ ‘ 𝑋 ) ) |
23 |
22
|
fveq2d |
⊢ ( 𝜑 → ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) = ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) |
24 |
23
|
fveq2d |
⊢ ( 𝜑 → ( MetOpen ‘ ( dist ‘ ( toℂPreHil ‘ ( ℝfld freeLMod 𝑋 ) ) ) ) = ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) ) |
25 |
14 21 24
|
3eqtrd |
⊢ ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) ) |
26 |
3 25
|
eleqtrd |
⊢ ( 𝜑 → 𝐺 ∈ ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) ) |
27 |
26
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) → 𝐺 ∈ ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) ) |
28 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) → 𝑥 ∈ 𝐺 ) |
29 |
|
eqid |
⊢ ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) = ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) |
30 |
29
|
mopni2 |
⊢ ( ( ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( ∞Met ‘ ( ℝ ↑m 𝑋 ) ) ∧ 𝐺 ∈ ( MetOpen ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) ∧ 𝑥 ∈ 𝐺 ) → ∃ 𝑒 ∈ ℝ+ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) |
31 |
10 27 28 30
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) → ∃ 𝑒 ∈ ℝ+ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) |
32 |
1
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) ∧ 𝑒 ∈ ℝ+ ) → 𝑋 ∈ Fin ) |
33 |
|
eqid |
⊢ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) = ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) |
34 |
33
|
rrxtoponfi |
⊢ ( 𝑋 ∈ Fin → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( TopOn ‘ ( ℝ ↑m 𝑋 ) ) ) |
35 |
1 34
|
syl |
⊢ ( 𝜑 → ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( TopOn ‘ ( ℝ ↑m 𝑋 ) ) ) |
36 |
|
toponss |
⊢ ( ( ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ∈ ( TopOn ‘ ( ℝ ↑m 𝑋 ) ) ∧ 𝐺 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) → 𝐺 ⊆ ( ℝ ↑m 𝑋 ) ) |
37 |
35 3 36
|
syl2anc |
⊢ ( 𝜑 → 𝐺 ⊆ ( ℝ ↑m 𝑋 ) ) |
38 |
37
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) → 𝐺 ⊆ ( ℝ ↑m 𝑋 ) ) |
39 |
38 28
|
sseldd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) → 𝑥 ∈ ( ℝ ↑m 𝑋 ) ) |
40 |
39
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) ∧ 𝑒 ∈ ℝ+ ) → 𝑥 ∈ ( ℝ ↑m 𝑋 ) ) |
41 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) ∧ 𝑒 ∈ ℝ+ ) → 𝑒 ∈ ℝ+ ) |
42 |
32 40 41
|
hoiqssbl |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) ∧ 𝑒 ∈ ℝ+ ) → ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) |
43 |
42
|
3adant3 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) ∧ 𝑒 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) → ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) |
44 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) |
45 |
|
nfv |
⊢ Ⅎ 𝑖 ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) |
46 |
|
nfcv |
⊢ Ⅎ 𝑖 𝑥 |
47 |
|
nfixp1 |
⊢ Ⅎ 𝑖 X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) |
48 |
46 47
|
nfel |
⊢ Ⅎ 𝑖 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) |
49 |
|
nfcv |
⊢ Ⅎ 𝑖 ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) |
50 |
47 49
|
nfss |
⊢ Ⅎ 𝑖 X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) |
51 |
48 50
|
nfan |
⊢ Ⅎ 𝑖 ( 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) |
52 |
44 45 51
|
nf3an |
⊢ Ⅎ 𝑖 ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) ∧ ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) ∧ ( 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) |
53 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) → 𝑋 ∈ Fin ) |
54 |
53
|
3ad2ant1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) ∧ ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) ∧ ( 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) → 𝑋 ∈ Fin ) |
55 |
|
elmapi |
⊢ ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) → 𝑐 : 𝑋 ⟶ ℚ ) |
56 |
55
|
adantr |
⊢ ( ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) → 𝑐 : 𝑋 ⟶ ℚ ) |
57 |
56
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) ∧ ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) ∧ ( 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) → 𝑐 : 𝑋 ⟶ ℚ ) |
58 |
|
elmapi |
⊢ ( 𝑑 ∈ ( ℚ ↑m 𝑋 ) → 𝑑 : 𝑋 ⟶ ℚ ) |
59 |
58
|
adantl |
⊢ ( ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) → 𝑑 : 𝑋 ⟶ ℚ ) |
60 |
59
|
3ad2ant2 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) ∧ ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) ∧ ( 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) → 𝑑 : 𝑋 ⟶ ℚ ) |
61 |
|
simp3r |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) ∧ ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) ∧ ( 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) → X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) |
62 |
|
simp1r |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) ∧ ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) ∧ ( 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) → ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) |
63 |
|
simp3l |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) ∧ ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) ∧ ( 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) → 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ) |
64 |
|
eqid |
⊢ ( 𝑖 ∈ 𝑋 ↦ 〈 ( 𝑐 ‘ 𝑖 ) , ( 𝑑 ‘ 𝑖 ) 〉 ) = ( 𝑖 ∈ 𝑋 ↦ 〈 ( 𝑐 ‘ 𝑖 ) , ( 𝑑 ‘ 𝑖 ) 〉 ) |
65 |
52 54 57 60 61 62 63 4 64
|
opnvonmbllem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) ∧ ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) ∧ ( 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) ) → ∃ ℎ ∈ 𝐾 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) |
66 |
65
|
3exp |
⊢ ( ( 𝜑 ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) → ( ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) → ( ( 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) → ∃ ℎ ∈ 𝐾 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) ) ) |
67 |
66
|
adantlr |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) → ( ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) → ( ( 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) → ∃ ℎ ∈ 𝐾 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) ) ) |
68 |
67
|
3adant2 |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) ∧ 𝑒 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) → ( ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ) → ( ( 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) → ∃ ℎ ∈ 𝐾 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) ) ) |
69 |
68
|
rexlimdvv |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) ∧ 𝑒 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) → ( ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ) → ∃ ℎ ∈ 𝐾 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) ) |
70 |
43 69
|
mpd |
⊢ ( ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) ∧ 𝑒 ∈ ℝ+ ∧ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 ) → ∃ ℎ ∈ 𝐾 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) |
71 |
70
|
3exp |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) → ( 𝑒 ∈ ℝ+ → ( ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 → ∃ ℎ ∈ 𝐾 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) ) ) |
72 |
71
|
rexlimdv |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) → ( ∃ 𝑒 ∈ ℝ+ ( 𝑥 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝑒 ) ⊆ 𝐺 → ∃ ℎ ∈ 𝐾 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) ) |
73 |
31 72
|
mpd |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) → ∃ ℎ ∈ 𝐾 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) |
74 |
|
eliun |
⊢ ( 𝑥 ∈ ∪ ℎ ∈ 𝐾 X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ↔ ∃ ℎ ∈ 𝐾 𝑥 ∈ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) |
75 |
73 74
|
sylibr |
⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐺 ) → 𝑥 ∈ ∪ ℎ ∈ 𝐾 X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) |
76 |
75
|
ralrimiva |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐺 𝑥 ∈ ∪ ℎ ∈ 𝐾 X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) |
77 |
|
dfss3 |
⊢ ( 𝐺 ⊆ ∪ ℎ ∈ 𝐾 X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ↔ ∀ 𝑥 ∈ 𝐺 𝑥 ∈ ∪ ℎ ∈ 𝐾 X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) |
78 |
76 77
|
sylibr |
⊢ ( 𝜑 → 𝐺 ⊆ ∪ ℎ ∈ 𝐾 X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) |
79 |
4
|
eleq2i |
⊢ ( ℎ ∈ 𝐾 ↔ ℎ ∈ { ℎ ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ⊆ 𝐺 } ) |
80 |
79
|
biimpi |
⊢ ( ℎ ∈ 𝐾 → ℎ ∈ { ℎ ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ⊆ 𝐺 } ) |
81 |
80
|
adantl |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐾 ) → ℎ ∈ { ℎ ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ⊆ 𝐺 } ) |
82 |
|
rabid |
⊢ ( ℎ ∈ { ℎ ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ⊆ 𝐺 } ↔ ( ℎ ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∧ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ⊆ 𝐺 ) ) |
83 |
81 82
|
sylib |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐾 ) → ( ℎ ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∧ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ⊆ 𝐺 ) ) |
84 |
83
|
simprd |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐾 ) → X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ⊆ 𝐺 ) |
85 |
84
|
ralrimiva |
⊢ ( 𝜑 → ∀ ℎ ∈ 𝐾 X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ⊆ 𝐺 ) |
86 |
|
iunss |
⊢ ( ∪ ℎ ∈ 𝐾 X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ⊆ 𝐺 ↔ ∀ ℎ ∈ 𝐾 X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ⊆ 𝐺 ) |
87 |
85 86
|
sylibr |
⊢ ( 𝜑 → ∪ ℎ ∈ 𝐾 X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ⊆ 𝐺 ) |
88 |
78 87
|
eqssd |
⊢ ( 𝜑 → 𝐺 = ∪ ℎ ∈ 𝐾 X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) |
89 |
1 2
|
dmovnsal |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
90 |
|
ssrab2 |
⊢ { ℎ ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ⊆ 𝐺 } ⊆ ( ( ℚ × ℚ ) ↑m 𝑋 ) |
91 |
4 90
|
eqsstri |
⊢ 𝐾 ⊆ ( ( ℚ × ℚ ) ↑m 𝑋 ) |
92 |
91
|
a1i |
⊢ ( 𝜑 → 𝐾 ⊆ ( ( ℚ × ℚ ) ↑m 𝑋 ) ) |
93 |
|
qct |
⊢ ℚ ≼ ω |
94 |
93
|
a1i |
⊢ ( 𝜑 → ℚ ≼ ω ) |
95 |
|
xpct |
⊢ ( ( ℚ ≼ ω ∧ ℚ ≼ ω ) → ( ℚ × ℚ ) ≼ ω ) |
96 |
94 94 95
|
syl2anc |
⊢ ( 𝜑 → ( ℚ × ℚ ) ≼ ω ) |
97 |
96 1
|
mpct |
⊢ ( 𝜑 → ( ( ℚ × ℚ ) ↑m 𝑋 ) ≼ ω ) |
98 |
|
ssct |
⊢ ( ( 𝐾 ⊆ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∧ ( ( ℚ × ℚ ) ↑m 𝑋 ) ≼ ω ) → 𝐾 ≼ ω ) |
99 |
92 97 98
|
syl2anc |
⊢ ( 𝜑 → 𝐾 ≼ ω ) |
100 |
|
reex |
⊢ ℝ ∈ V |
101 |
100 100
|
xpex |
⊢ ( ℝ × ℝ ) ∈ V |
102 |
|
qssre |
⊢ ℚ ⊆ ℝ |
103 |
|
xpss12 |
⊢ ( ( ℚ ⊆ ℝ ∧ ℚ ⊆ ℝ ) → ( ℚ × ℚ ) ⊆ ( ℝ × ℝ ) ) |
104 |
102 102 103
|
mp2an |
⊢ ( ℚ × ℚ ) ⊆ ( ℝ × ℝ ) |
105 |
|
mapss |
⊢ ( ( ( ℝ × ℝ ) ∈ V ∧ ( ℚ × ℚ ) ⊆ ( ℝ × ℝ ) ) → ( ( ℚ × ℚ ) ↑m 𝑋 ) ⊆ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
106 |
101 104 105
|
mp2an |
⊢ ( ( ℚ × ℚ ) ↑m 𝑋 ) ⊆ ( ( ℝ × ℝ ) ↑m 𝑋 ) |
107 |
91
|
sseli |
⊢ ( ℎ ∈ 𝐾 → ℎ ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ) |
108 |
106 107
|
sselid |
⊢ ( ℎ ∈ 𝐾 → ℎ ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ) |
109 |
|
elmapi |
⊢ ( ℎ ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) → ℎ : 𝑋 ⟶ ( ℝ × ℝ ) ) |
110 |
108 109
|
syl |
⊢ ( ℎ ∈ 𝐾 → ℎ : 𝑋 ⟶ ( ℝ × ℝ ) ) |
111 |
110
|
adantl |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐾 ) → ℎ : 𝑋 ⟶ ( ℝ × ℝ ) ) |
112 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑖 → ( 1st ‘ ( ℎ ‘ 𝑘 ) ) = ( 1st ‘ ( ℎ ‘ 𝑖 ) ) ) |
113 |
112
|
cbvmptv |
⊢ ( 𝑘 ∈ 𝑋 ↦ ( 1st ‘ ( ℎ ‘ 𝑘 ) ) ) = ( 𝑖 ∈ 𝑋 ↦ ( 1st ‘ ( ℎ ‘ 𝑖 ) ) ) |
114 |
|
2fveq3 |
⊢ ( 𝑘 = 𝑖 → ( 2nd ‘ ( ℎ ‘ 𝑘 ) ) = ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) |
115 |
114
|
cbvmptv |
⊢ ( 𝑘 ∈ 𝑋 ↦ ( 2nd ‘ ( ℎ ‘ 𝑘 ) ) ) = ( 𝑖 ∈ 𝑋 ↦ ( 2nd ‘ ( ℎ ‘ 𝑖 ) ) ) |
116 |
111 113 115
|
hoicoto2 |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐾 ) → X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) = X 𝑖 ∈ 𝑋 ( ( ( 𝑘 ∈ 𝑋 ↦ ( 1st ‘ ( ℎ ‘ 𝑘 ) ) ) ‘ 𝑖 ) [,) ( ( 𝑘 ∈ 𝑋 ↦ ( 2nd ‘ ( ℎ ‘ 𝑘 ) ) ) ‘ 𝑖 ) ) ) |
117 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐾 ) → 𝑋 ∈ Fin ) |
118 |
111
|
ffvelrnda |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ 𝐾 ) ∧ 𝑘 ∈ 𝑋 ) → ( ℎ ‘ 𝑘 ) ∈ ( ℝ × ℝ ) ) |
119 |
|
xp1st |
⊢ ( ( ℎ ‘ 𝑘 ) ∈ ( ℝ × ℝ ) → ( 1st ‘ ( ℎ ‘ 𝑘 ) ) ∈ ℝ ) |
120 |
118 119
|
syl |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ 𝐾 ) ∧ 𝑘 ∈ 𝑋 ) → ( 1st ‘ ( ℎ ‘ 𝑘 ) ) ∈ ℝ ) |
121 |
120
|
fmpttd |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐾 ) → ( 𝑘 ∈ 𝑋 ↦ ( 1st ‘ ( ℎ ‘ 𝑘 ) ) ) : 𝑋 ⟶ ℝ ) |
122 |
|
xp2nd |
⊢ ( ( ℎ ‘ 𝑘 ) ∈ ( ℝ × ℝ ) → ( 2nd ‘ ( ℎ ‘ 𝑘 ) ) ∈ ℝ ) |
123 |
118 122
|
syl |
⊢ ( ( ( 𝜑 ∧ ℎ ∈ 𝐾 ) ∧ 𝑘 ∈ 𝑋 ) → ( 2nd ‘ ( ℎ ‘ 𝑘 ) ) ∈ ℝ ) |
124 |
123
|
fmpttd |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐾 ) → ( 𝑘 ∈ 𝑋 ↦ ( 2nd ‘ ( ℎ ‘ 𝑘 ) ) ) : 𝑋 ⟶ ℝ ) |
125 |
117 2 121 124
|
hoimbl |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐾 ) → X 𝑖 ∈ 𝑋 ( ( ( 𝑘 ∈ 𝑋 ↦ ( 1st ‘ ( ℎ ‘ 𝑘 ) ) ) ‘ 𝑖 ) [,) ( ( 𝑘 ∈ 𝑋 ↦ ( 2nd ‘ ( ℎ ‘ 𝑘 ) ) ) ‘ 𝑖 ) ) ∈ 𝑆 ) |
126 |
116 125
|
eqeltrd |
⊢ ( ( 𝜑 ∧ ℎ ∈ 𝐾 ) → X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ∈ 𝑆 ) |
127 |
89 99 126
|
saliuncl |
⊢ ( 𝜑 → ∪ ℎ ∈ 𝐾 X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ∈ 𝑆 ) |
128 |
88 127
|
eqeltrd |
⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) |