| Step | Hyp | Ref | Expression | 
						
							| 1 |  | opnvonmbllem2.x |  |-  ( ph -> X e. Fin ) | 
						
							| 2 |  | opnvonmbllem2.n |  |-  S = dom ( voln ` X ) | 
						
							| 3 |  | opnvonmbllem2.g |  |-  ( ph -> G e. ( TopOpen ` ( RR^ ` X ) ) ) | 
						
							| 4 |  | opnvonmbl.k |  |-  K = { h e. ( ( QQ X. QQ ) ^m X ) | X_ i e. X ( ( [,) o. h ) ` i ) C_ G } | 
						
							| 5 |  | eqid |  |-  ( dist ` ( RR^ ` X ) ) = ( dist ` ( RR^ ` X ) ) | 
						
							| 6 | 5 | rrxmetfi |  |-  ( X e. Fin -> ( dist ` ( RR^ ` X ) ) e. ( Met ` ( RR ^m X ) ) ) | 
						
							| 7 | 1 6 | syl |  |-  ( ph -> ( dist ` ( RR^ ` X ) ) e. ( Met ` ( RR ^m X ) ) ) | 
						
							| 8 |  | metxmet |  |-  ( ( dist ` ( RR^ ` X ) ) e. ( Met ` ( RR ^m X ) ) -> ( dist ` ( RR^ ` X ) ) e. ( *Met ` ( RR ^m X ) ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ph -> ( dist ` ( RR^ ` X ) ) e. ( *Met ` ( RR ^m X ) ) ) | 
						
							| 10 | 9 | adantr |  |-  ( ( ph /\ x e. G ) -> ( dist ` ( RR^ ` X ) ) e. ( *Met ` ( RR ^m X ) ) ) | 
						
							| 11 |  | eqid |  |-  ( RR^ ` X ) = ( RR^ ` X ) | 
						
							| 12 | 11 | rrxval |  |-  ( X e. Fin -> ( RR^ ` X ) = ( toCPreHil ` ( RRfld freeLMod X ) ) ) | 
						
							| 13 | 1 12 | syl |  |-  ( ph -> ( RR^ ` X ) = ( toCPreHil ` ( RRfld freeLMod X ) ) ) | 
						
							| 14 | 13 | fveq2d |  |-  ( ph -> ( TopOpen ` ( RR^ ` X ) ) = ( TopOpen ` ( toCPreHil ` ( RRfld freeLMod X ) ) ) ) | 
						
							| 15 |  | ovex |  |-  ( RRfld freeLMod X ) e. _V | 
						
							| 16 |  | eqid |  |-  ( toCPreHil ` ( RRfld freeLMod X ) ) = ( toCPreHil ` ( RRfld freeLMod X ) ) | 
						
							| 17 |  | eqid |  |-  ( dist ` ( toCPreHil ` ( RRfld freeLMod X ) ) ) = ( dist ` ( toCPreHil ` ( RRfld freeLMod X ) ) ) | 
						
							| 18 |  | eqid |  |-  ( TopOpen ` ( toCPreHil ` ( RRfld freeLMod X ) ) ) = ( TopOpen ` ( toCPreHil ` ( RRfld freeLMod X ) ) ) | 
						
							| 19 | 16 17 18 | tcphtopn |  |-  ( ( RRfld freeLMod X ) e. _V -> ( TopOpen ` ( toCPreHil ` ( RRfld freeLMod X ) ) ) = ( MetOpen ` ( dist ` ( toCPreHil ` ( RRfld freeLMod X ) ) ) ) ) | 
						
							| 20 | 15 19 | ax-mp |  |-  ( TopOpen ` ( toCPreHil ` ( RRfld freeLMod X ) ) ) = ( MetOpen ` ( dist ` ( toCPreHil ` ( RRfld freeLMod X ) ) ) ) | 
						
							| 21 | 20 | a1i |  |-  ( ph -> ( TopOpen ` ( toCPreHil ` ( RRfld freeLMod X ) ) ) = ( MetOpen ` ( dist ` ( toCPreHil ` ( RRfld freeLMod X ) ) ) ) ) | 
						
							| 22 | 13 | eqcomd |  |-  ( ph -> ( toCPreHil ` ( RRfld freeLMod X ) ) = ( RR^ ` X ) ) | 
						
							| 23 | 22 | fveq2d |  |-  ( ph -> ( dist ` ( toCPreHil ` ( RRfld freeLMod X ) ) ) = ( dist ` ( RR^ ` X ) ) ) | 
						
							| 24 | 23 | fveq2d |  |-  ( ph -> ( MetOpen ` ( dist ` ( toCPreHil ` ( RRfld freeLMod X ) ) ) ) = ( MetOpen ` ( dist ` ( RR^ ` X ) ) ) ) | 
						
							| 25 | 14 21 24 | 3eqtrd |  |-  ( ph -> ( TopOpen ` ( RR^ ` X ) ) = ( MetOpen ` ( dist ` ( RR^ ` X ) ) ) ) | 
						
							| 26 | 3 25 | eleqtrd |  |-  ( ph -> G e. ( MetOpen ` ( dist ` ( RR^ ` X ) ) ) ) | 
						
							| 27 | 26 | adantr |  |-  ( ( ph /\ x e. G ) -> G e. ( MetOpen ` ( dist ` ( RR^ ` X ) ) ) ) | 
						
							| 28 |  | simpr |  |-  ( ( ph /\ x e. G ) -> x e. G ) | 
						
							| 29 |  | eqid |  |-  ( MetOpen ` ( dist ` ( RR^ ` X ) ) ) = ( MetOpen ` ( dist ` ( RR^ ` X ) ) ) | 
						
							| 30 | 29 | mopni2 |  |-  ( ( ( dist ` ( RR^ ` X ) ) e. ( *Met ` ( RR ^m X ) ) /\ G e. ( MetOpen ` ( dist ` ( RR^ ` X ) ) ) /\ x e. G ) -> E. e e. RR+ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) | 
						
							| 31 | 10 27 28 30 | syl3anc |  |-  ( ( ph /\ x e. G ) -> E. e e. RR+ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) | 
						
							| 32 | 1 | ad2antrr |  |-  ( ( ( ph /\ x e. G ) /\ e e. RR+ ) -> X e. Fin ) | 
						
							| 33 |  | eqid |  |-  ( TopOpen ` ( RR^ ` X ) ) = ( TopOpen ` ( RR^ ` X ) ) | 
						
							| 34 | 33 | rrxtoponfi |  |-  ( X e. Fin -> ( TopOpen ` ( RR^ ` X ) ) e. ( TopOn ` ( RR ^m X ) ) ) | 
						
							| 35 | 1 34 | syl |  |-  ( ph -> ( TopOpen ` ( RR^ ` X ) ) e. ( TopOn ` ( RR ^m X ) ) ) | 
						
							| 36 |  | toponss |  |-  ( ( ( TopOpen ` ( RR^ ` X ) ) e. ( TopOn ` ( RR ^m X ) ) /\ G e. ( TopOpen ` ( RR^ ` X ) ) ) -> G C_ ( RR ^m X ) ) | 
						
							| 37 | 35 3 36 | syl2anc |  |-  ( ph -> G C_ ( RR ^m X ) ) | 
						
							| 38 | 37 | adantr |  |-  ( ( ph /\ x e. G ) -> G C_ ( RR ^m X ) ) | 
						
							| 39 | 38 28 | sseldd |  |-  ( ( ph /\ x e. G ) -> x e. ( RR ^m X ) ) | 
						
							| 40 | 39 | adantr |  |-  ( ( ( ph /\ x e. G ) /\ e e. RR+ ) -> x e. ( RR ^m X ) ) | 
						
							| 41 |  | simpr |  |-  ( ( ( ph /\ x e. G ) /\ e e. RR+ ) -> e e. RR+ ) | 
						
							| 42 | 32 40 41 | hoiqssbl |  |-  ( ( ( ph /\ x e. G ) /\ e e. RR+ ) -> E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( x e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) ) ) | 
						
							| 43 | 42 | 3adant3 |  |-  ( ( ( ph /\ x e. G ) /\ e e. RR+ /\ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) -> E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( x e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) ) ) | 
						
							| 44 |  | nfv |  |-  F/ i ( ph /\ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) | 
						
							| 45 |  | nfv |  |-  F/ i ( c e. ( QQ ^m X ) /\ d e. ( QQ ^m X ) ) | 
						
							| 46 |  | nfcv |  |-  F/_ i x | 
						
							| 47 |  | nfixp1 |  |-  F/_ i X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) | 
						
							| 48 | 46 47 | nfel |  |-  F/ i x e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) | 
						
							| 49 |  | nfcv |  |-  F/_ i ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) | 
						
							| 50 | 47 49 | nfss |  |-  F/ i X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) | 
						
							| 51 | 48 50 | nfan |  |-  F/ i ( x e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) ) | 
						
							| 52 | 44 45 51 | nf3an |  |-  F/ i ( ( ph /\ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) /\ ( c e. ( QQ ^m X ) /\ d e. ( QQ ^m X ) ) /\ ( x e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) ) ) | 
						
							| 53 | 1 | adantr |  |-  ( ( ph /\ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) -> X e. Fin ) | 
						
							| 54 | 53 | 3ad2ant1 |  |-  ( ( ( ph /\ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) /\ ( c e. ( QQ ^m X ) /\ d e. ( QQ ^m X ) ) /\ ( x e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) ) ) -> X e. Fin ) | 
						
							| 55 |  | elmapi |  |-  ( c e. ( QQ ^m X ) -> c : X --> QQ ) | 
						
							| 56 | 55 | adantr |  |-  ( ( c e. ( QQ ^m X ) /\ d e. ( QQ ^m X ) ) -> c : X --> QQ ) | 
						
							| 57 | 56 | 3ad2ant2 |  |-  ( ( ( ph /\ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) /\ ( c e. ( QQ ^m X ) /\ d e. ( QQ ^m X ) ) /\ ( x e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) ) ) -> c : X --> QQ ) | 
						
							| 58 |  | elmapi |  |-  ( d e. ( QQ ^m X ) -> d : X --> QQ ) | 
						
							| 59 | 58 | adantl |  |-  ( ( c e. ( QQ ^m X ) /\ d e. ( QQ ^m X ) ) -> d : X --> QQ ) | 
						
							| 60 | 59 | 3ad2ant2 |  |-  ( ( ( ph /\ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) /\ ( c e. ( QQ ^m X ) /\ d e. ( QQ ^m X ) ) /\ ( x e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) ) ) -> d : X --> QQ ) | 
						
							| 61 |  | simp3r |  |-  ( ( ( ph /\ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) /\ ( c e. ( QQ ^m X ) /\ d e. ( QQ ^m X ) ) /\ ( x e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) ) ) -> X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) ) | 
						
							| 62 |  | simp1r |  |-  ( ( ( ph /\ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) /\ ( c e. ( QQ ^m X ) /\ d e. ( QQ ^m X ) ) /\ ( x e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) ) ) -> ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) | 
						
							| 63 |  | simp3l |  |-  ( ( ( ph /\ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) /\ ( c e. ( QQ ^m X ) /\ d e. ( QQ ^m X ) ) /\ ( x e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) ) ) -> x e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) ) | 
						
							| 64 |  | eqid |  |-  ( i e. X |-> <. ( c ` i ) , ( d ` i ) >. ) = ( i e. X |-> <. ( c ` i ) , ( d ` i ) >. ) | 
						
							| 65 | 52 54 57 60 61 62 63 4 64 | opnvonmbllem1 |  |-  ( ( ( ph /\ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) /\ ( c e. ( QQ ^m X ) /\ d e. ( QQ ^m X ) ) /\ ( x e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) ) ) -> E. h e. K x e. X_ i e. X ( ( [,) o. h ) ` i ) ) | 
						
							| 66 | 65 | 3exp |  |-  ( ( ph /\ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) -> ( ( c e. ( QQ ^m X ) /\ d e. ( QQ ^m X ) ) -> ( ( x e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) ) -> E. h e. K x e. X_ i e. X ( ( [,) o. h ) ` i ) ) ) ) | 
						
							| 67 | 66 | adantlr |  |-  ( ( ( ph /\ x e. G ) /\ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) -> ( ( c e. ( QQ ^m X ) /\ d e. ( QQ ^m X ) ) -> ( ( x e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) ) -> E. h e. K x e. X_ i e. X ( ( [,) o. h ) ` i ) ) ) ) | 
						
							| 68 | 67 | 3adant2 |  |-  ( ( ( ph /\ x e. G ) /\ e e. RR+ /\ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) -> ( ( c e. ( QQ ^m X ) /\ d e. ( QQ ^m X ) ) -> ( ( x e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) ) -> E. h e. K x e. X_ i e. X ( ( [,) o. h ) ` i ) ) ) ) | 
						
							| 69 | 68 | rexlimdvv |  |-  ( ( ( ph /\ x e. G ) /\ e e. RR+ /\ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) -> ( E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( x e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) ) -> E. h e. K x e. X_ i e. X ( ( [,) o. h ) ` i ) ) ) | 
						
							| 70 | 43 69 | mpd |  |-  ( ( ( ph /\ x e. G ) /\ e e. RR+ /\ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G ) -> E. h e. K x e. X_ i e. X ( ( [,) o. h ) ` i ) ) | 
						
							| 71 | 70 | 3exp |  |-  ( ( ph /\ x e. G ) -> ( e e. RR+ -> ( ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G -> E. h e. K x e. X_ i e. X ( ( [,) o. h ) ` i ) ) ) ) | 
						
							| 72 | 71 | rexlimdv |  |-  ( ( ph /\ x e. G ) -> ( E. e e. RR+ ( x ( ball ` ( dist ` ( RR^ ` X ) ) ) e ) C_ G -> E. h e. K x e. X_ i e. X ( ( [,) o. h ) ` i ) ) ) | 
						
							| 73 | 31 72 | mpd |  |-  ( ( ph /\ x e. G ) -> E. h e. K x e. X_ i e. X ( ( [,) o. h ) ` i ) ) | 
						
							| 74 |  | eliun |  |-  ( x e. U_ h e. K X_ i e. X ( ( [,) o. h ) ` i ) <-> E. h e. K x e. X_ i e. X ( ( [,) o. h ) ` i ) ) | 
						
							| 75 | 73 74 | sylibr |  |-  ( ( ph /\ x e. G ) -> x e. U_ h e. K X_ i e. X ( ( [,) o. h ) ` i ) ) | 
						
							| 76 | 75 | ralrimiva |  |-  ( ph -> A. x e. G x e. U_ h e. K X_ i e. X ( ( [,) o. h ) ` i ) ) | 
						
							| 77 |  | dfss3 |  |-  ( G C_ U_ h e. K X_ i e. X ( ( [,) o. h ) ` i ) <-> A. x e. G x e. U_ h e. K X_ i e. X ( ( [,) o. h ) ` i ) ) | 
						
							| 78 | 76 77 | sylibr |  |-  ( ph -> G C_ U_ h e. K X_ i e. X ( ( [,) o. h ) ` i ) ) | 
						
							| 79 | 4 | eleq2i |  |-  ( h e. K <-> h e. { h e. ( ( QQ X. QQ ) ^m X ) | X_ i e. X ( ( [,) o. h ) ` i ) C_ G } ) | 
						
							| 80 | 79 | biimpi |  |-  ( h e. K -> h e. { h e. ( ( QQ X. QQ ) ^m X ) | X_ i e. X ( ( [,) o. h ) ` i ) C_ G } ) | 
						
							| 81 | 80 | adantl |  |-  ( ( ph /\ h e. K ) -> h e. { h e. ( ( QQ X. QQ ) ^m X ) | X_ i e. X ( ( [,) o. h ) ` i ) C_ G } ) | 
						
							| 82 |  | rabid |  |-  ( h e. { h e. ( ( QQ X. QQ ) ^m X ) | X_ i e. X ( ( [,) o. h ) ` i ) C_ G } <-> ( h e. ( ( QQ X. QQ ) ^m X ) /\ X_ i e. X ( ( [,) o. h ) ` i ) C_ G ) ) | 
						
							| 83 | 81 82 | sylib |  |-  ( ( ph /\ h e. K ) -> ( h e. ( ( QQ X. QQ ) ^m X ) /\ X_ i e. X ( ( [,) o. h ) ` i ) C_ G ) ) | 
						
							| 84 | 83 | simprd |  |-  ( ( ph /\ h e. K ) -> X_ i e. X ( ( [,) o. h ) ` i ) C_ G ) | 
						
							| 85 | 84 | ralrimiva |  |-  ( ph -> A. h e. K X_ i e. X ( ( [,) o. h ) ` i ) C_ G ) | 
						
							| 86 |  | iunss |  |-  ( U_ h e. K X_ i e. X ( ( [,) o. h ) ` i ) C_ G <-> A. h e. K X_ i e. X ( ( [,) o. h ) ` i ) C_ G ) | 
						
							| 87 | 85 86 | sylibr |  |-  ( ph -> U_ h e. K X_ i e. X ( ( [,) o. h ) ` i ) C_ G ) | 
						
							| 88 | 78 87 | eqssd |  |-  ( ph -> G = U_ h e. K X_ i e. X ( ( [,) o. h ) ` i ) ) | 
						
							| 89 | 1 2 | dmovnsal |  |-  ( ph -> S e. SAlg ) | 
						
							| 90 |  | ssrab2 |  |-  { h e. ( ( QQ X. QQ ) ^m X ) | X_ i e. X ( ( [,) o. h ) ` i ) C_ G } C_ ( ( QQ X. QQ ) ^m X ) | 
						
							| 91 | 4 90 | eqsstri |  |-  K C_ ( ( QQ X. QQ ) ^m X ) | 
						
							| 92 | 91 | a1i |  |-  ( ph -> K C_ ( ( QQ X. QQ ) ^m X ) ) | 
						
							| 93 |  | qct |  |-  QQ ~<_ _om | 
						
							| 94 | 93 | a1i |  |-  ( ph -> QQ ~<_ _om ) | 
						
							| 95 |  | xpct |  |-  ( ( QQ ~<_ _om /\ QQ ~<_ _om ) -> ( QQ X. QQ ) ~<_ _om ) | 
						
							| 96 | 94 94 95 | syl2anc |  |-  ( ph -> ( QQ X. QQ ) ~<_ _om ) | 
						
							| 97 | 96 1 | mpct |  |-  ( ph -> ( ( QQ X. QQ ) ^m X ) ~<_ _om ) | 
						
							| 98 |  | ssct |  |-  ( ( K C_ ( ( QQ X. QQ ) ^m X ) /\ ( ( QQ X. QQ ) ^m X ) ~<_ _om ) -> K ~<_ _om ) | 
						
							| 99 | 92 97 98 | syl2anc |  |-  ( ph -> K ~<_ _om ) | 
						
							| 100 |  | reex |  |-  RR e. _V | 
						
							| 101 | 100 100 | xpex |  |-  ( RR X. RR ) e. _V | 
						
							| 102 |  | qssre |  |-  QQ C_ RR | 
						
							| 103 |  | xpss12 |  |-  ( ( QQ C_ RR /\ QQ C_ RR ) -> ( QQ X. QQ ) C_ ( RR X. RR ) ) | 
						
							| 104 | 102 102 103 | mp2an |  |-  ( QQ X. QQ ) C_ ( RR X. RR ) | 
						
							| 105 |  | mapss |  |-  ( ( ( RR X. RR ) e. _V /\ ( QQ X. QQ ) C_ ( RR X. RR ) ) -> ( ( QQ X. QQ ) ^m X ) C_ ( ( RR X. RR ) ^m X ) ) | 
						
							| 106 | 101 104 105 | mp2an |  |-  ( ( QQ X. QQ ) ^m X ) C_ ( ( RR X. RR ) ^m X ) | 
						
							| 107 | 91 | sseli |  |-  ( h e. K -> h e. ( ( QQ X. QQ ) ^m X ) ) | 
						
							| 108 | 106 107 | sselid |  |-  ( h e. K -> h e. ( ( RR X. RR ) ^m X ) ) | 
						
							| 109 |  | elmapi |  |-  ( h e. ( ( RR X. RR ) ^m X ) -> h : X --> ( RR X. RR ) ) | 
						
							| 110 | 108 109 | syl |  |-  ( h e. K -> h : X --> ( RR X. RR ) ) | 
						
							| 111 | 110 | adantl |  |-  ( ( ph /\ h e. K ) -> h : X --> ( RR X. RR ) ) | 
						
							| 112 |  | 2fveq3 |  |-  ( k = i -> ( 1st ` ( h ` k ) ) = ( 1st ` ( h ` i ) ) ) | 
						
							| 113 | 112 | cbvmptv |  |-  ( k e. X |-> ( 1st ` ( h ` k ) ) ) = ( i e. X |-> ( 1st ` ( h ` i ) ) ) | 
						
							| 114 |  | 2fveq3 |  |-  ( k = i -> ( 2nd ` ( h ` k ) ) = ( 2nd ` ( h ` i ) ) ) | 
						
							| 115 | 114 | cbvmptv |  |-  ( k e. X |-> ( 2nd ` ( h ` k ) ) ) = ( i e. X |-> ( 2nd ` ( h ` i ) ) ) | 
						
							| 116 | 111 113 115 | hoicoto2 |  |-  ( ( ph /\ h e. K ) -> X_ i e. X ( ( [,) o. h ) ` i ) = X_ i e. X ( ( ( k e. X |-> ( 1st ` ( h ` k ) ) ) ` i ) [,) ( ( k e. X |-> ( 2nd ` ( h ` k ) ) ) ` i ) ) ) | 
						
							| 117 | 1 | adantr |  |-  ( ( ph /\ h e. K ) -> X e. Fin ) | 
						
							| 118 | 111 | ffvelcdmda |  |-  ( ( ( ph /\ h e. K ) /\ k e. X ) -> ( h ` k ) e. ( RR X. RR ) ) | 
						
							| 119 |  | xp1st |  |-  ( ( h ` k ) e. ( RR X. RR ) -> ( 1st ` ( h ` k ) ) e. RR ) | 
						
							| 120 | 118 119 | syl |  |-  ( ( ( ph /\ h e. K ) /\ k e. X ) -> ( 1st ` ( h ` k ) ) e. RR ) | 
						
							| 121 | 120 | fmpttd |  |-  ( ( ph /\ h e. K ) -> ( k e. X |-> ( 1st ` ( h ` k ) ) ) : X --> RR ) | 
						
							| 122 |  | xp2nd |  |-  ( ( h ` k ) e. ( RR X. RR ) -> ( 2nd ` ( h ` k ) ) e. RR ) | 
						
							| 123 | 118 122 | syl |  |-  ( ( ( ph /\ h e. K ) /\ k e. X ) -> ( 2nd ` ( h ` k ) ) e. RR ) | 
						
							| 124 | 123 | fmpttd |  |-  ( ( ph /\ h e. K ) -> ( k e. X |-> ( 2nd ` ( h ` k ) ) ) : X --> RR ) | 
						
							| 125 | 117 2 121 124 | hoimbl |  |-  ( ( ph /\ h e. K ) -> X_ i e. X ( ( ( k e. X |-> ( 1st ` ( h ` k ) ) ) ` i ) [,) ( ( k e. X |-> ( 2nd ` ( h ` k ) ) ) ` i ) ) e. S ) | 
						
							| 126 | 116 125 | eqeltrd |  |-  ( ( ph /\ h e. K ) -> X_ i e. X ( ( [,) o. h ) ` i ) e. S ) | 
						
							| 127 | 89 99 126 | saliuncl |  |-  ( ph -> U_ h e. K X_ i e. X ( ( [,) o. h ) ` i ) e. S ) | 
						
							| 128 | 88 127 | eqeltrd |  |-  ( ph -> G e. S ) |