| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoicoto2.i |  |-  ( ph -> I : X --> ( RR X. RR ) ) | 
						
							| 2 |  | hoicoto2.a |  |-  A = ( k e. X |-> ( 1st ` ( I ` k ) ) ) | 
						
							| 3 |  | hoicoto2.b |  |-  B = ( k e. X |-> ( 2nd ` ( I ` k ) ) ) | 
						
							| 4 | 1 | adantr |  |-  ( ( ph /\ k e. X ) -> I : X --> ( RR X. RR ) ) | 
						
							| 5 |  | simpr |  |-  ( ( ph /\ k e. X ) -> k e. X ) | 
						
							| 6 | 4 5 | fvovco |  |-  ( ( ph /\ k e. X ) -> ( ( [,) o. I ) ` k ) = ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) ) | 
						
							| 7 | 1 | ffvelcdmda |  |-  ( ( ph /\ k e. X ) -> ( I ` k ) e. ( RR X. RR ) ) | 
						
							| 8 |  | xp1st |  |-  ( ( I ` k ) e. ( RR X. RR ) -> ( 1st ` ( I ` k ) ) e. RR ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( ph /\ k e. X ) -> ( 1st ` ( I ` k ) ) e. RR ) | 
						
							| 10 | 9 | elexd |  |-  ( ( ph /\ k e. X ) -> ( 1st ` ( I ` k ) ) e. _V ) | 
						
							| 11 | 2 | fvmpt2 |  |-  ( ( k e. X /\ ( 1st ` ( I ` k ) ) e. _V ) -> ( A ` k ) = ( 1st ` ( I ` k ) ) ) | 
						
							| 12 | 5 10 11 | syl2anc |  |-  ( ( ph /\ k e. X ) -> ( A ` k ) = ( 1st ` ( I ` k ) ) ) | 
						
							| 13 | 12 | eqcomd |  |-  ( ( ph /\ k e. X ) -> ( 1st ` ( I ` k ) ) = ( A ` k ) ) | 
						
							| 14 |  | xp2nd |  |-  ( ( I ` k ) e. ( RR X. RR ) -> ( 2nd ` ( I ` k ) ) e. RR ) | 
						
							| 15 | 7 14 | syl |  |-  ( ( ph /\ k e. X ) -> ( 2nd ` ( I ` k ) ) e. RR ) | 
						
							| 16 | 15 | elexd |  |-  ( ( ph /\ k e. X ) -> ( 2nd ` ( I ` k ) ) e. _V ) | 
						
							| 17 | 3 | fvmpt2 |  |-  ( ( k e. X /\ ( 2nd ` ( I ` k ) ) e. _V ) -> ( B ` k ) = ( 2nd ` ( I ` k ) ) ) | 
						
							| 18 | 5 16 17 | syl2anc |  |-  ( ( ph /\ k e. X ) -> ( B ` k ) = ( 2nd ` ( I ` k ) ) ) | 
						
							| 19 | 18 | eqcomd |  |-  ( ( ph /\ k e. X ) -> ( 2nd ` ( I ` k ) ) = ( B ` k ) ) | 
						
							| 20 | 13 19 | oveq12d |  |-  ( ( ph /\ k e. X ) -> ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) = ( ( A ` k ) [,) ( B ` k ) ) ) | 
						
							| 21 | 6 20 | eqtrd |  |-  ( ( ph /\ k e. X ) -> ( ( [,) o. I ) ` k ) = ( ( A ` k ) [,) ( B ` k ) ) ) | 
						
							| 22 | 21 | ixpeq2dva |  |-  ( ph -> X_ k e. X ( ( [,) o. I ) ` k ) = X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |