Step |
Hyp |
Ref |
Expression |
1 |
|
hoicoto2.i |
|- ( ph -> I : X --> ( RR X. RR ) ) |
2 |
|
hoicoto2.a |
|- A = ( k e. X |-> ( 1st ` ( I ` k ) ) ) |
3 |
|
hoicoto2.b |
|- B = ( k e. X |-> ( 2nd ` ( I ` k ) ) ) |
4 |
1
|
adantr |
|- ( ( ph /\ k e. X ) -> I : X --> ( RR X. RR ) ) |
5 |
|
simpr |
|- ( ( ph /\ k e. X ) -> k e. X ) |
6 |
4 5
|
fvovco |
|- ( ( ph /\ k e. X ) -> ( ( [,) o. I ) ` k ) = ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) ) |
7 |
1
|
ffvelrnda |
|- ( ( ph /\ k e. X ) -> ( I ` k ) e. ( RR X. RR ) ) |
8 |
|
xp1st |
|- ( ( I ` k ) e. ( RR X. RR ) -> ( 1st ` ( I ` k ) ) e. RR ) |
9 |
7 8
|
syl |
|- ( ( ph /\ k e. X ) -> ( 1st ` ( I ` k ) ) e. RR ) |
10 |
9
|
elexd |
|- ( ( ph /\ k e. X ) -> ( 1st ` ( I ` k ) ) e. _V ) |
11 |
2
|
fvmpt2 |
|- ( ( k e. X /\ ( 1st ` ( I ` k ) ) e. _V ) -> ( A ` k ) = ( 1st ` ( I ` k ) ) ) |
12 |
5 10 11
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( A ` k ) = ( 1st ` ( I ` k ) ) ) |
13 |
12
|
eqcomd |
|- ( ( ph /\ k e. X ) -> ( 1st ` ( I ` k ) ) = ( A ` k ) ) |
14 |
|
xp2nd |
|- ( ( I ` k ) e. ( RR X. RR ) -> ( 2nd ` ( I ` k ) ) e. RR ) |
15 |
7 14
|
syl |
|- ( ( ph /\ k e. X ) -> ( 2nd ` ( I ` k ) ) e. RR ) |
16 |
15
|
elexd |
|- ( ( ph /\ k e. X ) -> ( 2nd ` ( I ` k ) ) e. _V ) |
17 |
3
|
fvmpt2 |
|- ( ( k e. X /\ ( 2nd ` ( I ` k ) ) e. _V ) -> ( B ` k ) = ( 2nd ` ( I ` k ) ) ) |
18 |
5 16 17
|
syl2anc |
|- ( ( ph /\ k e. X ) -> ( B ` k ) = ( 2nd ` ( I ` k ) ) ) |
19 |
18
|
eqcomd |
|- ( ( ph /\ k e. X ) -> ( 2nd ` ( I ` k ) ) = ( B ` k ) ) |
20 |
13 19
|
oveq12d |
|- ( ( ph /\ k e. X ) -> ( ( 1st ` ( I ` k ) ) [,) ( 2nd ` ( I ` k ) ) ) = ( ( A ` k ) [,) ( B ` k ) ) ) |
21 |
6 20
|
eqtrd |
|- ( ( ph /\ k e. X ) -> ( ( [,) o. I ) ` k ) = ( ( A ` k ) [,) ( B ` k ) ) ) |
22 |
21
|
ixpeq2dva |
|- ( ph -> X_ k e. X ( ( [,) o. I ) ` k ) = X_ k e. X ( ( A ` k ) [,) ( B ` k ) ) ) |