| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoiqssbl.x |
|- ( ph -> X e. Fin ) |
| 2 |
|
hoiqssbl.y |
|- ( ph -> Y e. ( RR ^m X ) ) |
| 3 |
|
hoiqssbl.e |
|- ( ph -> E e. RR+ ) |
| 4 |
|
0ex |
|- (/) e. _V |
| 5 |
4
|
snid |
|- (/) e. { (/) } |
| 6 |
5
|
a1i |
|- ( ( ph /\ X = (/) ) -> (/) e. { (/) } ) |
| 7 |
2
|
adantr |
|- ( ( ph /\ X = (/) ) -> Y e. ( RR ^m X ) ) |
| 8 |
|
oveq2 |
|- ( X = (/) -> ( RR ^m X ) = ( RR ^m (/) ) ) |
| 9 |
|
reex |
|- RR e. _V |
| 10 |
|
mapdm0 |
|- ( RR e. _V -> ( RR ^m (/) ) = { (/) } ) |
| 11 |
9 10
|
ax-mp |
|- ( RR ^m (/) ) = { (/) } |
| 12 |
11
|
a1i |
|- ( X = (/) -> ( RR ^m (/) ) = { (/) } ) |
| 13 |
8 12
|
eqtrd |
|- ( X = (/) -> ( RR ^m X ) = { (/) } ) |
| 14 |
13
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( RR ^m X ) = { (/) } ) |
| 15 |
7 14
|
eleqtrd |
|- ( ( ph /\ X = (/) ) -> Y e. { (/) } ) |
| 16 |
|
0fi |
|- (/) e. Fin |
| 17 |
|
eqid |
|- ( dist ` ( RR^ ` (/) ) ) = ( dist ` ( RR^ ` (/) ) ) |
| 18 |
17
|
rrxmetfi |
|- ( (/) e. Fin -> ( dist ` ( RR^ ` (/) ) ) e. ( Met ` ( RR ^m (/) ) ) ) |
| 19 |
16 18
|
ax-mp |
|- ( dist ` ( RR^ ` (/) ) ) e. ( Met ` ( RR ^m (/) ) ) |
| 20 |
|
metxmet |
|- ( ( dist ` ( RR^ ` (/) ) ) e. ( Met ` ( RR ^m (/) ) ) -> ( dist ` ( RR^ ` (/) ) ) e. ( *Met ` ( RR ^m (/) ) ) ) |
| 21 |
19 20
|
ax-mp |
|- ( dist ` ( RR^ ` (/) ) ) e. ( *Met ` ( RR ^m (/) ) ) |
| 22 |
21
|
a1i |
|- ( ( ph /\ X = (/) ) -> ( dist ` ( RR^ ` (/) ) ) e. ( *Met ` ( RR ^m (/) ) ) ) |
| 23 |
6 11
|
eleqtrrdi |
|- ( ( ph /\ X = (/) ) -> (/) e. ( RR ^m (/) ) ) |
| 24 |
3
|
adantr |
|- ( ( ph /\ X = (/) ) -> E e. RR+ ) |
| 25 |
|
blcntr |
|- ( ( ( dist ` ( RR^ ` (/) ) ) e. ( *Met ` ( RR ^m (/) ) ) /\ (/) e. ( RR ^m (/) ) /\ E e. RR+ ) -> (/) e. ( (/) ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) |
| 26 |
22 23 24 25
|
syl3anc |
|- ( ( ph /\ X = (/) ) -> (/) e. ( (/) ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) |
| 27 |
|
elsni |
|- ( Y e. { (/) } -> Y = (/) ) |
| 28 |
15 27
|
syl |
|- ( ( ph /\ X = (/) ) -> Y = (/) ) |
| 29 |
28
|
eqcomd |
|- ( ( ph /\ X = (/) ) -> (/) = Y ) |
| 30 |
29
|
oveq1d |
|- ( ( ph /\ X = (/) ) -> ( (/) ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) = ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) |
| 31 |
26 30
|
eleqtrd |
|- ( ( ph /\ X = (/) ) -> (/) e. ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) |
| 32 |
31
|
snssd |
|- ( ( ph /\ X = (/) ) -> { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) |
| 33 |
15 32
|
jca |
|- ( ( ph /\ X = (/) ) -> ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) |
| 34 |
|
biidd |
|- ( d = (/) -> ( ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) <-> ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) |
| 35 |
34
|
rspcev |
|- ( ( (/) e. { (/) } /\ ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) -> E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) |
| 36 |
6 33 35
|
syl2anc |
|- ( ( ph /\ X = (/) ) -> E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) |
| 37 |
|
biidd |
|- ( c = (/) -> ( E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) <-> E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) |
| 38 |
37
|
rspcev |
|- ( ( (/) e. { (/) } /\ E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) -> E. c e. { (/) } E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) |
| 39 |
6 36 38
|
syl2anc |
|- ( ( ph /\ X = (/) ) -> E. c e. { (/) } E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) |
| 40 |
|
oveq2 |
|- ( X = (/) -> ( QQ ^m X ) = ( QQ ^m (/) ) ) |
| 41 |
|
qex |
|- QQ e. _V |
| 42 |
|
mapdm0 |
|- ( QQ e. _V -> ( QQ ^m (/) ) = { (/) } ) |
| 43 |
41 42
|
ax-mp |
|- ( QQ ^m (/) ) = { (/) } |
| 44 |
43
|
a1i |
|- ( X = (/) -> ( QQ ^m (/) ) = { (/) } ) |
| 45 |
40 44
|
eqtr2d |
|- ( X = (/) -> { (/) } = ( QQ ^m X ) ) |
| 46 |
45
|
eqcomd |
|- ( X = (/) -> ( QQ ^m X ) = { (/) } ) |
| 47 |
46
|
eleq2d |
|- ( X = (/) -> ( c e. ( QQ ^m X ) <-> c e. { (/) } ) ) |
| 48 |
46
|
eleq2d |
|- ( X = (/) -> ( d e. ( QQ ^m X ) <-> d e. { (/) } ) ) |
| 49 |
48
|
anbi1d |
|- ( X = (/) -> ( ( d e. ( QQ ^m X ) /\ ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) <-> ( d e. { (/) } /\ ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) ) |
| 50 |
49
|
rexbidv2 |
|- ( X = (/) -> ( E. d e. ( QQ ^m X ) ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) <-> E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) |
| 51 |
47 50
|
anbi12d |
|- ( X = (/) -> ( ( c e. ( QQ ^m X ) /\ E. d e. ( QQ ^m X ) ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) <-> ( c e. { (/) } /\ E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) ) |
| 52 |
51
|
rexbidv2 |
|- ( X = (/) -> ( E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) <-> E. c e. { (/) } E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) |
| 53 |
52
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) <-> E. c e. { (/) } E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) |
| 54 |
39 53
|
mpbird |
|- ( ( ph /\ X = (/) ) -> E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) |
| 55 |
|
ixpeq1 |
|- ( X = (/) -> X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) = X_ i e. (/) ( ( c ` i ) [,) ( d ` i ) ) ) |
| 56 |
|
ixp0x |
|- X_ i e. (/) ( ( c ` i ) [,) ( d ` i ) ) = { (/) } |
| 57 |
56
|
a1i |
|- ( X = (/) -> X_ i e. (/) ( ( c ` i ) [,) ( d ` i ) ) = { (/) } ) |
| 58 |
55 57
|
eqtrd |
|- ( X = (/) -> X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) = { (/) } ) |
| 59 |
58
|
eleq2d |
|- ( X = (/) -> ( Y e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) <-> Y e. { (/) } ) ) |
| 60 |
|
2fveq3 |
|- ( X = (/) -> ( dist ` ( RR^ ` X ) ) = ( dist ` ( RR^ ` (/) ) ) ) |
| 61 |
60
|
fveq2d |
|- ( X = (/) -> ( ball ` ( dist ` ( RR^ ` X ) ) ) = ( ball ` ( dist ` ( RR^ ` (/) ) ) ) ) |
| 62 |
61
|
oveqd |
|- ( X = (/) -> ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) = ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) |
| 63 |
58 62
|
sseq12d |
|- ( X = (/) -> ( X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) <-> { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) |
| 64 |
59 63
|
anbi12d |
|- ( X = (/) -> ( ( Y e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) <-> ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) |
| 65 |
64
|
rexbidv |
|- ( X = (/) -> ( E. d e. ( QQ ^m X ) ( Y e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) <-> E. d e. ( QQ ^m X ) ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) |
| 66 |
65
|
rexbidv |
|- ( X = (/) -> ( E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) <-> E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) |
| 67 |
66
|
adantl |
|- ( ( ph /\ X = (/) ) -> ( E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) <-> E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) |
| 68 |
54 67
|
mpbird |
|- ( ( ph /\ X = (/) ) -> E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) ) |
| 69 |
1
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> X e. Fin ) |
| 70 |
|
neqne |
|- ( -. X = (/) -> X =/= (/) ) |
| 71 |
70
|
adantl |
|- ( ( ph /\ -. X = (/) ) -> X =/= (/) ) |
| 72 |
2
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> Y e. ( RR ^m X ) ) |
| 73 |
3
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> E e. RR+ ) |
| 74 |
69 71 72 73
|
hoiqssbllem3 |
|- ( ( ph /\ -. X = (/) ) -> E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) ) |
| 75 |
68 74
|
pm2.61dan |
|- ( ph -> E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) ) |