| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoiqssbl.x |  |-  ( ph -> X e. Fin ) | 
						
							| 2 |  | hoiqssbl.y |  |-  ( ph -> Y e. ( RR ^m X ) ) | 
						
							| 3 |  | hoiqssbl.e |  |-  ( ph -> E e. RR+ ) | 
						
							| 4 |  | 0ex |  |-  (/) e. _V | 
						
							| 5 | 4 | snid |  |-  (/) e. { (/) } | 
						
							| 6 | 5 | a1i |  |-  ( ( ph /\ X = (/) ) -> (/) e. { (/) } ) | 
						
							| 7 | 2 | adantr |  |-  ( ( ph /\ X = (/) ) -> Y e. ( RR ^m X ) ) | 
						
							| 8 |  | oveq2 |  |-  ( X = (/) -> ( RR ^m X ) = ( RR ^m (/) ) ) | 
						
							| 9 |  | reex |  |-  RR e. _V | 
						
							| 10 |  | mapdm0 |  |-  ( RR e. _V -> ( RR ^m (/) ) = { (/) } ) | 
						
							| 11 | 9 10 | ax-mp |  |-  ( RR ^m (/) ) = { (/) } | 
						
							| 12 | 11 | a1i |  |-  ( X = (/) -> ( RR ^m (/) ) = { (/) } ) | 
						
							| 13 | 8 12 | eqtrd |  |-  ( X = (/) -> ( RR ^m X ) = { (/) } ) | 
						
							| 14 | 13 | adantl |  |-  ( ( ph /\ X = (/) ) -> ( RR ^m X ) = { (/) } ) | 
						
							| 15 | 7 14 | eleqtrd |  |-  ( ( ph /\ X = (/) ) -> Y e. { (/) } ) | 
						
							| 16 |  | 0fi |  |-  (/) e. Fin | 
						
							| 17 |  | eqid |  |-  ( dist ` ( RR^ ` (/) ) ) = ( dist ` ( RR^ ` (/) ) ) | 
						
							| 18 | 17 | rrxmetfi |  |-  ( (/) e. Fin -> ( dist ` ( RR^ ` (/) ) ) e. ( Met ` ( RR ^m (/) ) ) ) | 
						
							| 19 | 16 18 | ax-mp |  |-  ( dist ` ( RR^ ` (/) ) ) e. ( Met ` ( RR ^m (/) ) ) | 
						
							| 20 |  | metxmet |  |-  ( ( dist ` ( RR^ ` (/) ) ) e. ( Met ` ( RR ^m (/) ) ) -> ( dist ` ( RR^ ` (/) ) ) e. ( *Met ` ( RR ^m (/) ) ) ) | 
						
							| 21 | 19 20 | ax-mp |  |-  ( dist ` ( RR^ ` (/) ) ) e. ( *Met ` ( RR ^m (/) ) ) | 
						
							| 22 | 21 | a1i |  |-  ( ( ph /\ X = (/) ) -> ( dist ` ( RR^ ` (/) ) ) e. ( *Met ` ( RR ^m (/) ) ) ) | 
						
							| 23 | 6 11 | eleqtrrdi |  |-  ( ( ph /\ X = (/) ) -> (/) e. ( RR ^m (/) ) ) | 
						
							| 24 | 3 | adantr |  |-  ( ( ph /\ X = (/) ) -> E e. RR+ ) | 
						
							| 25 |  | blcntr |  |-  ( ( ( dist ` ( RR^ ` (/) ) ) e. ( *Met ` ( RR ^m (/) ) ) /\ (/) e. ( RR ^m (/) ) /\ E e. RR+ ) -> (/) e. ( (/) ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) | 
						
							| 26 | 22 23 24 25 | syl3anc |  |-  ( ( ph /\ X = (/) ) -> (/) e. ( (/) ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) | 
						
							| 27 |  | elsni |  |-  ( Y e. { (/) } -> Y = (/) ) | 
						
							| 28 | 15 27 | syl |  |-  ( ( ph /\ X = (/) ) -> Y = (/) ) | 
						
							| 29 | 28 | eqcomd |  |-  ( ( ph /\ X = (/) ) -> (/) = Y ) | 
						
							| 30 | 29 | oveq1d |  |-  ( ( ph /\ X = (/) ) -> ( (/) ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) = ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) | 
						
							| 31 | 26 30 | eleqtrd |  |-  ( ( ph /\ X = (/) ) -> (/) e. ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) | 
						
							| 32 | 31 | snssd |  |-  ( ( ph /\ X = (/) ) -> { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) | 
						
							| 33 | 15 32 | jca |  |-  ( ( ph /\ X = (/) ) -> ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) | 
						
							| 34 |  | biidd |  |-  ( d = (/) -> ( ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) <-> ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) | 
						
							| 35 | 34 | rspcev |  |-  ( ( (/) e. { (/) } /\ ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) -> E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) | 
						
							| 36 | 6 33 35 | syl2anc |  |-  ( ( ph /\ X = (/) ) -> E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) | 
						
							| 37 |  | biidd |  |-  ( c = (/) -> ( E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) <-> E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) | 
						
							| 38 | 37 | rspcev |  |-  ( ( (/) e. { (/) } /\ E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) -> E. c e. { (/) } E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) | 
						
							| 39 | 6 36 38 | syl2anc |  |-  ( ( ph /\ X = (/) ) -> E. c e. { (/) } E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) | 
						
							| 40 |  | oveq2 |  |-  ( X = (/) -> ( QQ ^m X ) = ( QQ ^m (/) ) ) | 
						
							| 41 |  | qex |  |-  QQ e. _V | 
						
							| 42 |  | mapdm0 |  |-  ( QQ e. _V -> ( QQ ^m (/) ) = { (/) } ) | 
						
							| 43 | 41 42 | ax-mp |  |-  ( QQ ^m (/) ) = { (/) } | 
						
							| 44 | 43 | a1i |  |-  ( X = (/) -> ( QQ ^m (/) ) = { (/) } ) | 
						
							| 45 | 40 44 | eqtr2d |  |-  ( X = (/) -> { (/) } = ( QQ ^m X ) ) | 
						
							| 46 | 45 | eqcomd |  |-  ( X = (/) -> ( QQ ^m X ) = { (/) } ) | 
						
							| 47 | 46 | eleq2d |  |-  ( X = (/) -> ( c e. ( QQ ^m X ) <-> c e. { (/) } ) ) | 
						
							| 48 | 46 | eleq2d |  |-  ( X = (/) -> ( d e. ( QQ ^m X ) <-> d e. { (/) } ) ) | 
						
							| 49 | 48 | anbi1d |  |-  ( X = (/) -> ( ( d e. ( QQ ^m X ) /\ ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) <-> ( d e. { (/) } /\ ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) ) | 
						
							| 50 | 49 | rexbidv2 |  |-  ( X = (/) -> ( E. d e. ( QQ ^m X ) ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) <-> E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) | 
						
							| 51 | 47 50 | anbi12d |  |-  ( X = (/) -> ( ( c e. ( QQ ^m X ) /\ E. d e. ( QQ ^m X ) ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) <-> ( c e. { (/) } /\ E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) ) | 
						
							| 52 | 51 | rexbidv2 |  |-  ( X = (/) -> ( E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) <-> E. c e. { (/) } E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) | 
						
							| 53 | 52 | adantl |  |-  ( ( ph /\ X = (/) ) -> ( E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) <-> E. c e. { (/) } E. d e. { (/) } ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) | 
						
							| 54 | 39 53 | mpbird |  |-  ( ( ph /\ X = (/) ) -> E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) | 
						
							| 55 |  | ixpeq1 |  |-  ( X = (/) -> X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) = X_ i e. (/) ( ( c ` i ) [,) ( d ` i ) ) ) | 
						
							| 56 |  | ixp0x |  |-  X_ i e. (/) ( ( c ` i ) [,) ( d ` i ) ) = { (/) } | 
						
							| 57 | 56 | a1i |  |-  ( X = (/) -> X_ i e. (/) ( ( c ` i ) [,) ( d ` i ) ) = { (/) } ) | 
						
							| 58 | 55 57 | eqtrd |  |-  ( X = (/) -> X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) = { (/) } ) | 
						
							| 59 | 58 | eleq2d |  |-  ( X = (/) -> ( Y e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) <-> Y e. { (/) } ) ) | 
						
							| 60 |  | 2fveq3 |  |-  ( X = (/) -> ( dist ` ( RR^ ` X ) ) = ( dist ` ( RR^ ` (/) ) ) ) | 
						
							| 61 | 60 | fveq2d |  |-  ( X = (/) -> ( ball ` ( dist ` ( RR^ ` X ) ) ) = ( ball ` ( dist ` ( RR^ ` (/) ) ) ) ) | 
						
							| 62 | 61 | oveqd |  |-  ( X = (/) -> ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) = ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) | 
						
							| 63 | 58 62 | sseq12d |  |-  ( X = (/) -> ( X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) <-> { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) | 
						
							| 64 | 59 63 | anbi12d |  |-  ( X = (/) -> ( ( Y e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) <-> ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) | 
						
							| 65 | 64 | rexbidv |  |-  ( X = (/) -> ( E. d e. ( QQ ^m X ) ( Y e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) <-> E. d e. ( QQ ^m X ) ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) | 
						
							| 66 | 65 | rexbidv |  |-  ( X = (/) -> ( E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) <-> E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) | 
						
							| 67 | 66 | adantl |  |-  ( ( ph /\ X = (/) ) -> ( E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) <-> E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. { (/) } /\ { (/) } C_ ( Y ( ball ` ( dist ` ( RR^ ` (/) ) ) ) E ) ) ) ) | 
						
							| 68 | 54 67 | mpbird |  |-  ( ( ph /\ X = (/) ) -> E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) ) | 
						
							| 69 | 1 | adantr |  |-  ( ( ph /\ -. X = (/) ) -> X e. Fin ) | 
						
							| 70 |  | neqne |  |-  ( -. X = (/) -> X =/= (/) ) | 
						
							| 71 | 70 | adantl |  |-  ( ( ph /\ -. X = (/) ) -> X =/= (/) ) | 
						
							| 72 | 2 | adantr |  |-  ( ( ph /\ -. X = (/) ) -> Y e. ( RR ^m X ) ) | 
						
							| 73 | 3 | adantr |  |-  ( ( ph /\ -. X = (/) ) -> E e. RR+ ) | 
						
							| 74 | 69 71 72 73 | hoiqssbllem3 |  |-  ( ( ph /\ -. X = (/) ) -> E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) ) | 
						
							| 75 | 68 74 | pm2.61dan |  |-  ( ph -> E. c e. ( QQ ^m X ) E. d e. ( QQ ^m X ) ( Y e. X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) /\ X_ i e. X ( ( c ` i ) [,) ( d ` i ) ) C_ ( Y ( ball ` ( dist ` ( RR^ ` X ) ) ) E ) ) ) |