Step |
Hyp |
Ref |
Expression |
1 |
|
hoiqssbl.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
hoiqssbl.y |
⊢ ( 𝜑 → 𝑌 ∈ ( ℝ ↑m 𝑋 ) ) |
3 |
|
hoiqssbl.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
4 |
|
0ex |
⊢ ∅ ∈ V |
5 |
4
|
snid |
⊢ ∅ ∈ { ∅ } |
6 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∅ ∈ { ∅ } ) |
7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝑌 ∈ ( ℝ ↑m 𝑋 ) ) |
8 |
|
oveq2 |
⊢ ( 𝑋 = ∅ → ( ℝ ↑m 𝑋 ) = ( ℝ ↑m ∅ ) ) |
9 |
|
reex |
⊢ ℝ ∈ V |
10 |
|
mapdm0 |
⊢ ( ℝ ∈ V → ( ℝ ↑m ∅ ) = { ∅ } ) |
11 |
9 10
|
ax-mp |
⊢ ( ℝ ↑m ∅ ) = { ∅ } |
12 |
11
|
a1i |
⊢ ( 𝑋 = ∅ → ( ℝ ↑m ∅ ) = { ∅ } ) |
13 |
8 12
|
eqtrd |
⊢ ( 𝑋 = ∅ → ( ℝ ↑m 𝑋 ) = { ∅ } ) |
14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ℝ ↑m 𝑋 ) = { ∅ } ) |
15 |
7 14
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝑌 ∈ { ∅ } ) |
16 |
|
0fin |
⊢ ∅ ∈ Fin |
17 |
|
eqid |
⊢ ( dist ‘ ( ℝ^ ‘ ∅ ) ) = ( dist ‘ ( ℝ^ ‘ ∅ ) ) |
18 |
17
|
rrxmetfi |
⊢ ( ∅ ∈ Fin → ( dist ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( Met ‘ ( ℝ ↑m ∅ ) ) ) |
19 |
16 18
|
ax-mp |
⊢ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( Met ‘ ( ℝ ↑m ∅ ) ) |
20 |
|
metxmet |
⊢ ( ( dist ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( Met ‘ ( ℝ ↑m ∅ ) ) → ( dist ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( ∞Met ‘ ( ℝ ↑m ∅ ) ) ) |
21 |
19 20
|
ax-mp |
⊢ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( ∞Met ‘ ( ℝ ↑m ∅ ) ) |
22 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( dist ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( ∞Met ‘ ( ℝ ↑m ∅ ) ) ) |
23 |
6 11
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∅ ∈ ( ℝ ↑m ∅ ) ) |
24 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐸 ∈ ℝ+ ) |
25 |
|
blcntr |
⊢ ( ( ( dist ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( ∞Met ‘ ( ℝ ↑m ∅ ) ) ∧ ∅ ∈ ( ℝ ↑m ∅ ) ∧ 𝐸 ∈ ℝ+ ) → ∅ ∈ ( ∅ ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) |
26 |
22 23 24 25
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∅ ∈ ( ∅ ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) |
27 |
|
elsni |
⊢ ( 𝑌 ∈ { ∅ } → 𝑌 = ∅ ) |
28 |
15 27
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝑌 = ∅ ) |
29 |
28
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∅ = 𝑌 ) |
30 |
29
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ∅ ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) = ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) |
31 |
26 30
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∅ ∈ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) |
32 |
31
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) |
33 |
15 32
|
jca |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) |
34 |
|
biidd |
⊢ ( 𝑑 = ∅ → ( ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ↔ ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) |
35 |
34
|
rspcev |
⊢ ( ( ∅ ∈ { ∅ } ∧ ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) → ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) |
36 |
6 33 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) |
37 |
|
biidd |
⊢ ( 𝑐 = ∅ → ( ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ↔ ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) |
38 |
37
|
rspcev |
⊢ ( ( ∅ ∈ { ∅ } ∧ ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) → ∃ 𝑐 ∈ { ∅ } ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) |
39 |
6 36 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∃ 𝑐 ∈ { ∅ } ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) |
40 |
|
oveq2 |
⊢ ( 𝑋 = ∅ → ( ℚ ↑m 𝑋 ) = ( ℚ ↑m ∅ ) ) |
41 |
|
qex |
⊢ ℚ ∈ V |
42 |
|
mapdm0 |
⊢ ( ℚ ∈ V → ( ℚ ↑m ∅ ) = { ∅ } ) |
43 |
41 42
|
ax-mp |
⊢ ( ℚ ↑m ∅ ) = { ∅ } |
44 |
43
|
a1i |
⊢ ( 𝑋 = ∅ → ( ℚ ↑m ∅ ) = { ∅ } ) |
45 |
40 44
|
eqtr2d |
⊢ ( 𝑋 = ∅ → { ∅ } = ( ℚ ↑m 𝑋 ) ) |
46 |
45
|
eqcomd |
⊢ ( 𝑋 = ∅ → ( ℚ ↑m 𝑋 ) = { ∅ } ) |
47 |
46
|
eleq2d |
⊢ ( 𝑋 = ∅ → ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ↔ 𝑐 ∈ { ∅ } ) ) |
48 |
46
|
eleq2d |
⊢ ( 𝑋 = ∅ → ( 𝑑 ∈ ( ℚ ↑m 𝑋 ) ↔ 𝑑 ∈ { ∅ } ) ) |
49 |
48
|
anbi1d |
⊢ ( 𝑋 = ∅ → ( ( 𝑑 ∈ ( ℚ ↑m 𝑋 ) ∧ ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ↔ ( 𝑑 ∈ { ∅ } ∧ ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) ) |
50 |
49
|
rexbidv2 |
⊢ ( 𝑋 = ∅ → ( ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ↔ ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) |
51 |
47 50
|
anbi12d |
⊢ ( 𝑋 = ∅ → ( ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ↔ ( 𝑐 ∈ { ∅ } ∧ ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) ) |
52 |
51
|
rexbidv2 |
⊢ ( 𝑋 = ∅ → ( ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ↔ ∃ 𝑐 ∈ { ∅ } ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) |
53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ↔ ∃ 𝑐 ∈ { ∅ } ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) |
54 |
39 53
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) |
55 |
|
ixpeq1 |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) = X 𝑖 ∈ ∅ ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ) |
56 |
|
ixp0x |
⊢ X 𝑖 ∈ ∅ ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) = { ∅ } |
57 |
56
|
a1i |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ ∅ ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) = { ∅ } ) |
58 |
55 57
|
eqtrd |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) = { ∅ } ) |
59 |
58
|
eleq2d |
⊢ ( 𝑋 = ∅ → ( 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ↔ 𝑌 ∈ { ∅ } ) ) |
60 |
|
2fveq3 |
⊢ ( 𝑋 = ∅ → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) |
61 |
60
|
fveq2d |
⊢ ( 𝑋 = ∅ → ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) = ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) ) |
62 |
61
|
oveqd |
⊢ ( 𝑋 = ∅ → ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) = ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) |
63 |
58 62
|
sseq12d |
⊢ ( 𝑋 = ∅ → ( X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ↔ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) |
64 |
59 63
|
anbi12d |
⊢ ( 𝑋 = ∅ → ( ( 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) ↔ ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) |
65 |
64
|
rexbidv |
⊢ ( 𝑋 = ∅ → ( ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) ↔ ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) |
66 |
65
|
rexbidv |
⊢ ( 𝑋 = ∅ → ( ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) ↔ ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) |
67 |
66
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) ↔ ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) |
68 |
54 67
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) ) |
69 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ∈ Fin ) |
70 |
|
neqne |
⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) |
71 |
70
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≠ ∅ ) |
72 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑌 ∈ ( ℝ ↑m 𝑋 ) ) |
73 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝐸 ∈ ℝ+ ) |
74 |
69 71 72 73
|
hoiqssbllem3 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) ) |
75 |
68 74
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) ) |