| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hoiqssbl.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
|
hoiqssbl.y |
⊢ ( 𝜑 → 𝑌 ∈ ( ℝ ↑m 𝑋 ) ) |
| 3 |
|
hoiqssbl.e |
⊢ ( 𝜑 → 𝐸 ∈ ℝ+ ) |
| 4 |
|
0ex |
⊢ ∅ ∈ V |
| 5 |
4
|
snid |
⊢ ∅ ∈ { ∅ } |
| 6 |
5
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∅ ∈ { ∅ } ) |
| 7 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝑌 ∈ ( ℝ ↑m 𝑋 ) ) |
| 8 |
|
oveq2 |
⊢ ( 𝑋 = ∅ → ( ℝ ↑m 𝑋 ) = ( ℝ ↑m ∅ ) ) |
| 9 |
|
reex |
⊢ ℝ ∈ V |
| 10 |
|
mapdm0 |
⊢ ( ℝ ∈ V → ( ℝ ↑m ∅ ) = { ∅ } ) |
| 11 |
9 10
|
ax-mp |
⊢ ( ℝ ↑m ∅ ) = { ∅ } |
| 12 |
11
|
a1i |
⊢ ( 𝑋 = ∅ → ( ℝ ↑m ∅ ) = { ∅ } ) |
| 13 |
8 12
|
eqtrd |
⊢ ( 𝑋 = ∅ → ( ℝ ↑m 𝑋 ) = { ∅ } ) |
| 14 |
13
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ℝ ↑m 𝑋 ) = { ∅ } ) |
| 15 |
7 14
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝑌 ∈ { ∅ } ) |
| 16 |
|
0fi |
⊢ ∅ ∈ Fin |
| 17 |
|
eqid |
⊢ ( dist ‘ ( ℝ^ ‘ ∅ ) ) = ( dist ‘ ( ℝ^ ‘ ∅ ) ) |
| 18 |
17
|
rrxmetfi |
⊢ ( ∅ ∈ Fin → ( dist ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( Met ‘ ( ℝ ↑m ∅ ) ) ) |
| 19 |
16 18
|
ax-mp |
⊢ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( Met ‘ ( ℝ ↑m ∅ ) ) |
| 20 |
|
metxmet |
⊢ ( ( dist ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( Met ‘ ( ℝ ↑m ∅ ) ) → ( dist ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( ∞Met ‘ ( ℝ ↑m ∅ ) ) ) |
| 21 |
19 20
|
ax-mp |
⊢ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( ∞Met ‘ ( ℝ ↑m ∅ ) ) |
| 22 |
21
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( dist ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( ∞Met ‘ ( ℝ ↑m ∅ ) ) ) |
| 23 |
6 11
|
eleqtrrdi |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∅ ∈ ( ℝ ↑m ∅ ) ) |
| 24 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝐸 ∈ ℝ+ ) |
| 25 |
|
blcntr |
⊢ ( ( ( dist ‘ ( ℝ^ ‘ ∅ ) ) ∈ ( ∞Met ‘ ( ℝ ↑m ∅ ) ) ∧ ∅ ∈ ( ℝ ↑m ∅ ) ∧ 𝐸 ∈ ℝ+ ) → ∅ ∈ ( ∅ ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) |
| 26 |
22 23 24 25
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∅ ∈ ( ∅ ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) |
| 27 |
|
elsni |
⊢ ( 𝑌 ∈ { ∅ } → 𝑌 = ∅ ) |
| 28 |
15 27
|
syl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → 𝑌 = ∅ ) |
| 29 |
28
|
eqcomd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∅ = 𝑌 ) |
| 30 |
29
|
oveq1d |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ∅ ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) = ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) |
| 31 |
26 30
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∅ ∈ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) |
| 32 |
31
|
snssd |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) |
| 33 |
15 32
|
jca |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) |
| 34 |
|
biidd |
⊢ ( 𝑑 = ∅ → ( ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ↔ ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) |
| 35 |
34
|
rspcev |
⊢ ( ( ∅ ∈ { ∅ } ∧ ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) → ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) |
| 36 |
6 33 35
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) |
| 37 |
|
biidd |
⊢ ( 𝑐 = ∅ → ( ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ↔ ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) |
| 38 |
37
|
rspcev |
⊢ ( ( ∅ ∈ { ∅ } ∧ ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) → ∃ 𝑐 ∈ { ∅ } ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) |
| 39 |
6 36 38
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∃ 𝑐 ∈ { ∅ } ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) |
| 40 |
|
oveq2 |
⊢ ( 𝑋 = ∅ → ( ℚ ↑m 𝑋 ) = ( ℚ ↑m ∅ ) ) |
| 41 |
|
qex |
⊢ ℚ ∈ V |
| 42 |
|
mapdm0 |
⊢ ( ℚ ∈ V → ( ℚ ↑m ∅ ) = { ∅ } ) |
| 43 |
41 42
|
ax-mp |
⊢ ( ℚ ↑m ∅ ) = { ∅ } |
| 44 |
43
|
a1i |
⊢ ( 𝑋 = ∅ → ( ℚ ↑m ∅ ) = { ∅ } ) |
| 45 |
40 44
|
eqtr2d |
⊢ ( 𝑋 = ∅ → { ∅ } = ( ℚ ↑m 𝑋 ) ) |
| 46 |
45
|
eqcomd |
⊢ ( 𝑋 = ∅ → ( ℚ ↑m 𝑋 ) = { ∅ } ) |
| 47 |
46
|
eleq2d |
⊢ ( 𝑋 = ∅ → ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ↔ 𝑐 ∈ { ∅ } ) ) |
| 48 |
46
|
eleq2d |
⊢ ( 𝑋 = ∅ → ( 𝑑 ∈ ( ℚ ↑m 𝑋 ) ↔ 𝑑 ∈ { ∅ } ) ) |
| 49 |
48
|
anbi1d |
⊢ ( 𝑋 = ∅ → ( ( 𝑑 ∈ ( ℚ ↑m 𝑋 ) ∧ ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ↔ ( 𝑑 ∈ { ∅ } ∧ ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) ) |
| 50 |
49
|
rexbidv2 |
⊢ ( 𝑋 = ∅ → ( ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ↔ ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) |
| 51 |
47 50
|
anbi12d |
⊢ ( 𝑋 = ∅ → ( ( 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∧ ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ↔ ( 𝑐 ∈ { ∅ } ∧ ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) ) |
| 52 |
51
|
rexbidv2 |
⊢ ( 𝑋 = ∅ → ( ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ↔ ∃ 𝑐 ∈ { ∅ } ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) |
| 53 |
52
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ↔ ∃ 𝑐 ∈ { ∅ } ∃ 𝑑 ∈ { ∅ } ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) |
| 54 |
39 53
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) |
| 55 |
|
ixpeq1 |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) = X 𝑖 ∈ ∅ ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ) |
| 56 |
|
ixp0x |
⊢ X 𝑖 ∈ ∅ ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) = { ∅ } |
| 57 |
56
|
a1i |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ ∅ ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) = { ∅ } ) |
| 58 |
55 57
|
eqtrd |
⊢ ( 𝑋 = ∅ → X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) = { ∅ } ) |
| 59 |
58
|
eleq2d |
⊢ ( 𝑋 = ∅ → ( 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ↔ 𝑌 ∈ { ∅ } ) ) |
| 60 |
|
2fveq3 |
⊢ ( 𝑋 = ∅ → ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) = ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) |
| 61 |
60
|
fveq2d |
⊢ ( 𝑋 = ∅ → ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) = ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) ) |
| 62 |
61
|
oveqd |
⊢ ( 𝑋 = ∅ → ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) = ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) |
| 63 |
58 62
|
sseq12d |
⊢ ( 𝑋 = ∅ → ( X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ↔ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) |
| 64 |
59 63
|
anbi12d |
⊢ ( 𝑋 = ∅ → ( ( 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) ↔ ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) |
| 65 |
64
|
rexbidv |
⊢ ( 𝑋 = ∅ → ( ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) ↔ ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) |
| 66 |
65
|
rexbidv |
⊢ ( 𝑋 = ∅ → ( ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) ↔ ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) |
| 67 |
66
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ( ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) ↔ ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ { ∅ } ∧ { ∅ } ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) |
| 68 |
54 67
|
mpbird |
⊢ ( ( 𝜑 ∧ 𝑋 = ∅ ) → ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) ) |
| 69 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ∈ Fin ) |
| 70 |
|
neqne |
⊢ ( ¬ 𝑋 = ∅ → 𝑋 ≠ ∅ ) |
| 71 |
70
|
adantl |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑋 ≠ ∅ ) |
| 72 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝑌 ∈ ( ℝ ↑m 𝑋 ) ) |
| 73 |
3
|
adantr |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → 𝐸 ∈ ℝ+ ) |
| 74 |
69 71 72 73
|
hoiqssbllem3 |
⊢ ( ( 𝜑 ∧ ¬ 𝑋 = ∅ ) → ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) ) |
| 75 |
68 74
|
pm2.61dan |
⊢ ( 𝜑 → ∃ 𝑐 ∈ ( ℚ ↑m 𝑋 ) ∃ 𝑑 ∈ ( ℚ ↑m 𝑋 ) ( 𝑌 ∈ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ∧ X 𝑖 ∈ 𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ⊆ ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) ) |