| Step | Hyp | Ref | Expression | 
						
							| 1 |  | hoiqssbl.x | ⊢ ( 𝜑  →  𝑋  ∈  Fin ) | 
						
							| 2 |  | hoiqssbl.y | ⊢ ( 𝜑  →  𝑌  ∈  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 3 |  | hoiqssbl.e | ⊢ ( 𝜑  →  𝐸  ∈  ℝ+ ) | 
						
							| 4 |  | 0ex | ⊢ ∅  ∈  V | 
						
							| 5 | 4 | snid | ⊢ ∅  ∈  { ∅ } | 
						
							| 6 | 5 | a1i | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ∅  ∈  { ∅ } ) | 
						
							| 7 | 2 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  𝑌  ∈  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 8 |  | oveq2 | ⊢ ( 𝑋  =  ∅  →  ( ℝ  ↑m  𝑋 )  =  ( ℝ  ↑m  ∅ ) ) | 
						
							| 9 |  | reex | ⊢ ℝ  ∈  V | 
						
							| 10 |  | mapdm0 | ⊢ ( ℝ  ∈  V  →  ( ℝ  ↑m  ∅ )  =  { ∅ } ) | 
						
							| 11 | 9 10 | ax-mp | ⊢ ( ℝ  ↑m  ∅ )  =  { ∅ } | 
						
							| 12 | 11 | a1i | ⊢ ( 𝑋  =  ∅  →  ( ℝ  ↑m  ∅ )  =  { ∅ } ) | 
						
							| 13 | 8 12 | eqtrd | ⊢ ( 𝑋  =  ∅  →  ( ℝ  ↑m  𝑋 )  =  { ∅ } ) | 
						
							| 14 | 13 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( ℝ  ↑m  𝑋 )  =  { ∅ } ) | 
						
							| 15 | 7 14 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  𝑌  ∈  { ∅ } ) | 
						
							| 16 |  | 0fi | ⊢ ∅  ∈  Fin | 
						
							| 17 |  | eqid | ⊢ ( dist ‘ ( ℝ^ ‘ ∅ ) )  =  ( dist ‘ ( ℝ^ ‘ ∅ ) ) | 
						
							| 18 | 17 | rrxmetfi | ⊢ ( ∅  ∈  Fin  →  ( dist ‘ ( ℝ^ ‘ ∅ ) )  ∈  ( Met ‘ ( ℝ  ↑m  ∅ ) ) ) | 
						
							| 19 | 16 18 | ax-mp | ⊢ ( dist ‘ ( ℝ^ ‘ ∅ ) )  ∈  ( Met ‘ ( ℝ  ↑m  ∅ ) ) | 
						
							| 20 |  | metxmet | ⊢ ( ( dist ‘ ( ℝ^ ‘ ∅ ) )  ∈  ( Met ‘ ( ℝ  ↑m  ∅ ) )  →  ( dist ‘ ( ℝ^ ‘ ∅ ) )  ∈  ( ∞Met ‘ ( ℝ  ↑m  ∅ ) ) ) | 
						
							| 21 | 19 20 | ax-mp | ⊢ ( dist ‘ ( ℝ^ ‘ ∅ ) )  ∈  ( ∞Met ‘ ( ℝ  ↑m  ∅ ) ) | 
						
							| 22 | 21 | a1i | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( dist ‘ ( ℝ^ ‘ ∅ ) )  ∈  ( ∞Met ‘ ( ℝ  ↑m  ∅ ) ) ) | 
						
							| 23 | 6 11 | eleqtrrdi | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ∅  ∈  ( ℝ  ↑m  ∅ ) ) | 
						
							| 24 | 3 | adantr | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  𝐸  ∈  ℝ+ ) | 
						
							| 25 |  | blcntr | ⊢ ( ( ( dist ‘ ( ℝ^ ‘ ∅ ) )  ∈  ( ∞Met ‘ ( ℝ  ↑m  ∅ ) )  ∧  ∅  ∈  ( ℝ  ↑m  ∅ )  ∧  𝐸  ∈  ℝ+ )  →  ∅  ∈  ( ∅ ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) | 
						
							| 26 | 22 23 24 25 | syl3anc | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ∅  ∈  ( ∅ ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) | 
						
							| 27 |  | elsni | ⊢ ( 𝑌  ∈  { ∅ }  →  𝑌  =  ∅ ) | 
						
							| 28 | 15 27 | syl | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  𝑌  =  ∅ ) | 
						
							| 29 | 28 | eqcomd | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ∅  =  𝑌 ) | 
						
							| 30 | 29 | oveq1d | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( ∅ ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 )  =  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) | 
						
							| 31 | 26 30 | eleqtrd | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ∅  ∈  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) | 
						
							| 32 | 31 | snssd | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) | 
						
							| 33 | 15 32 | jca | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) | 
						
							| 34 |  | biidd | ⊢ ( 𝑑  =  ∅  →  ( ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) )  ↔  ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) | 
						
							| 35 | 34 | rspcev | ⊢ ( ( ∅  ∈  { ∅ }  ∧  ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) )  →  ∃ 𝑑  ∈  { ∅ } ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) | 
						
							| 36 | 6 33 35 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ∃ 𝑑  ∈  { ∅ } ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) | 
						
							| 37 |  | biidd | ⊢ ( 𝑐  =  ∅  →  ( ∃ 𝑑  ∈  { ∅ } ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) )  ↔  ∃ 𝑑  ∈  { ∅ } ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) | 
						
							| 38 | 37 | rspcev | ⊢ ( ( ∅  ∈  { ∅ }  ∧  ∃ 𝑑  ∈  { ∅ } ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) )  →  ∃ 𝑐  ∈  { ∅ } ∃ 𝑑  ∈  { ∅ } ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) | 
						
							| 39 | 6 36 38 | syl2anc | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ∃ 𝑐  ∈  { ∅ } ∃ 𝑑  ∈  { ∅ } ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) | 
						
							| 40 |  | oveq2 | ⊢ ( 𝑋  =  ∅  →  ( ℚ  ↑m  𝑋 )  =  ( ℚ  ↑m  ∅ ) ) | 
						
							| 41 |  | qex | ⊢ ℚ  ∈  V | 
						
							| 42 |  | mapdm0 | ⊢ ( ℚ  ∈  V  →  ( ℚ  ↑m  ∅ )  =  { ∅ } ) | 
						
							| 43 | 41 42 | ax-mp | ⊢ ( ℚ  ↑m  ∅ )  =  { ∅ } | 
						
							| 44 | 43 | a1i | ⊢ ( 𝑋  =  ∅  →  ( ℚ  ↑m  ∅ )  =  { ∅ } ) | 
						
							| 45 | 40 44 | eqtr2d | ⊢ ( 𝑋  =  ∅  →  { ∅ }  =  ( ℚ  ↑m  𝑋 ) ) | 
						
							| 46 | 45 | eqcomd | ⊢ ( 𝑋  =  ∅  →  ( ℚ  ↑m  𝑋 )  =  { ∅ } ) | 
						
							| 47 | 46 | eleq2d | ⊢ ( 𝑋  =  ∅  →  ( 𝑐  ∈  ( ℚ  ↑m  𝑋 )  ↔  𝑐  ∈  { ∅ } ) ) | 
						
							| 48 | 46 | eleq2d | ⊢ ( 𝑋  =  ∅  →  ( 𝑑  ∈  ( ℚ  ↑m  𝑋 )  ↔  𝑑  ∈  { ∅ } ) ) | 
						
							| 49 | 48 | anbi1d | ⊢ ( 𝑋  =  ∅  →  ( ( 𝑑  ∈  ( ℚ  ↑m  𝑋 )  ∧  ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) )  ↔  ( 𝑑  ∈  { ∅ }  ∧  ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) ) | 
						
							| 50 | 49 | rexbidv2 | ⊢ ( 𝑋  =  ∅  →  ( ∃ 𝑑  ∈  ( ℚ  ↑m  𝑋 ) ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) )  ↔  ∃ 𝑑  ∈  { ∅ } ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) | 
						
							| 51 | 47 50 | anbi12d | ⊢ ( 𝑋  =  ∅  →  ( ( 𝑐  ∈  ( ℚ  ↑m  𝑋 )  ∧  ∃ 𝑑  ∈  ( ℚ  ↑m  𝑋 ) ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) )  ↔  ( 𝑐  ∈  { ∅ }  ∧  ∃ 𝑑  ∈  { ∅ } ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) ) | 
						
							| 52 | 51 | rexbidv2 | ⊢ ( 𝑋  =  ∅  →  ( ∃ 𝑐  ∈  ( ℚ  ↑m  𝑋 ) ∃ 𝑑  ∈  ( ℚ  ↑m  𝑋 ) ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) )  ↔  ∃ 𝑐  ∈  { ∅ } ∃ 𝑑  ∈  { ∅ } ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) | 
						
							| 53 | 52 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( ∃ 𝑐  ∈  ( ℚ  ↑m  𝑋 ) ∃ 𝑑  ∈  ( ℚ  ↑m  𝑋 ) ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) )  ↔  ∃ 𝑐  ∈  { ∅ } ∃ 𝑑  ∈  { ∅ } ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) | 
						
							| 54 | 39 53 | mpbird | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ∃ 𝑐  ∈  ( ℚ  ↑m  𝑋 ) ∃ 𝑑  ∈  ( ℚ  ↑m  𝑋 ) ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) | 
						
							| 55 |  | ixpeq1 | ⊢ ( 𝑋  =  ∅  →  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  =  X 𝑖  ∈  ∅ ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) ) ) | 
						
							| 56 |  | ixp0x | ⊢ X 𝑖  ∈  ∅ ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  =  { ∅ } | 
						
							| 57 | 56 | a1i | ⊢ ( 𝑋  =  ∅  →  X 𝑖  ∈  ∅ ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  =  { ∅ } ) | 
						
							| 58 | 55 57 | eqtrd | ⊢ ( 𝑋  =  ∅  →  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  =  { ∅ } ) | 
						
							| 59 | 58 | eleq2d | ⊢ ( 𝑋  =  ∅  →  ( 𝑌  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ↔  𝑌  ∈  { ∅ } ) ) | 
						
							| 60 |  | 2fveq3 | ⊢ ( 𝑋  =  ∅  →  ( dist ‘ ( ℝ^ ‘ 𝑋 ) )  =  ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) | 
						
							| 61 | 60 | fveq2d | ⊢ ( 𝑋  =  ∅  →  ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) )  =  ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) ) | 
						
							| 62 | 61 | oveqd | ⊢ ( 𝑋  =  ∅  →  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 )  =  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) | 
						
							| 63 | 58 62 | sseq12d | ⊢ ( 𝑋  =  ∅  →  ( X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 )  ↔  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) | 
						
							| 64 | 59 63 | anbi12d | ⊢ ( 𝑋  =  ∅  →  ( ( 𝑌  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) )  ↔  ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) | 
						
							| 65 | 64 | rexbidv | ⊢ ( 𝑋  =  ∅  →  ( ∃ 𝑑  ∈  ( ℚ  ↑m  𝑋 ) ( 𝑌  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) )  ↔  ∃ 𝑑  ∈  ( ℚ  ↑m  𝑋 ) ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) | 
						
							| 66 | 65 | rexbidv | ⊢ ( 𝑋  =  ∅  →  ( ∃ 𝑐  ∈  ( ℚ  ↑m  𝑋 ) ∃ 𝑑  ∈  ( ℚ  ↑m  𝑋 ) ( 𝑌  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) )  ↔  ∃ 𝑐  ∈  ( ℚ  ↑m  𝑋 ) ∃ 𝑑  ∈  ( ℚ  ↑m  𝑋 ) ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) | 
						
							| 67 | 66 | adantl | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ( ∃ 𝑐  ∈  ( ℚ  ↑m  𝑋 ) ∃ 𝑑  ∈  ( ℚ  ↑m  𝑋 ) ( 𝑌  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) )  ↔  ∃ 𝑐  ∈  ( ℚ  ↑m  𝑋 ) ∃ 𝑑  ∈  ( ℚ  ↑m  𝑋 ) ( 𝑌  ∈  { ∅ }  ∧  { ∅ }  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ ∅ ) ) ) 𝐸 ) ) ) ) | 
						
							| 68 | 54 67 | mpbird | ⊢ ( ( 𝜑  ∧  𝑋  =  ∅ )  →  ∃ 𝑐  ∈  ( ℚ  ↑m  𝑋 ) ∃ 𝑑  ∈  ( ℚ  ↑m  𝑋 ) ( 𝑌  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) ) | 
						
							| 69 | 1 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  𝑋  ∈  Fin ) | 
						
							| 70 |  | neqne | ⊢ ( ¬  𝑋  =  ∅  →  𝑋  ≠  ∅ ) | 
						
							| 71 | 70 | adantl | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  𝑋  ≠  ∅ ) | 
						
							| 72 | 2 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  𝑌  ∈  ( ℝ  ↑m  𝑋 ) ) | 
						
							| 73 | 3 | adantr | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  𝐸  ∈  ℝ+ ) | 
						
							| 74 | 69 71 72 73 | hoiqssbllem3 | ⊢ ( ( 𝜑  ∧  ¬  𝑋  =  ∅ )  →  ∃ 𝑐  ∈  ( ℚ  ↑m  𝑋 ) ∃ 𝑑  ∈  ( ℚ  ↑m  𝑋 ) ( 𝑌  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) ) | 
						
							| 75 | 68 74 | pm2.61dan | ⊢ ( 𝜑  →  ∃ 𝑐  ∈  ( ℚ  ↑m  𝑋 ) ∃ 𝑑  ∈  ( ℚ  ↑m  𝑋 ) ( 𝑌  ∈  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ∧  X 𝑖  ∈  𝑋 ( ( 𝑐 ‘ 𝑖 ) [,) ( 𝑑 ‘ 𝑖 ) )  ⊆  ( 𝑌 ( ball ‘ ( dist ‘ ( ℝ^ ‘ 𝑋 ) ) ) 𝐸 ) ) ) |