Metamath Proof Explorer


Theorem hoiqssbl

Description: A n-dimensional ball contains a nonempty half-open interval with vertices with rational components. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses hoiqssbl.x φ X Fin
hoiqssbl.y φ Y X
hoiqssbl.e φ E +
Assertion hoiqssbl φ c X d X Y i X c i d i i X c i d i Y ball dist X E

Proof

Step Hyp Ref Expression
1 hoiqssbl.x φ X Fin
2 hoiqssbl.y φ Y X
3 hoiqssbl.e φ E +
4 0ex V
5 4 snid
6 5 a1i φ X =
7 2 adantr φ X = Y X
8 oveq2 X = X =
9 reex V
10 mapdm0 V =
11 9 10 ax-mp =
12 11 a1i X = =
13 8 12 eqtrd X = X =
14 13 adantl φ X = X =
15 7 14 eleqtrd φ X = Y
16 0fin Fin
17 eqid dist = dist
18 17 rrxmetfi Fin dist Met
19 16 18 ax-mp dist Met
20 metxmet dist Met dist ∞Met
21 19 20 ax-mp dist ∞Met
22 21 a1i φ X = dist ∞Met
23 6 11 eleqtrrdi φ X =
24 3 adantr φ X = E +
25 blcntr dist ∞Met E + ball dist E
26 22 23 24 25 syl3anc φ X = ball dist E
27 elsni Y Y =
28 15 27 syl φ X = Y =
29 28 eqcomd φ X = = Y
30 29 oveq1d φ X = ball dist E = Y ball dist E
31 26 30 eleqtrd φ X = Y ball dist E
32 31 snssd φ X = Y ball dist E
33 15 32 jca φ X = Y Y ball dist E
34 biidd d = Y Y ball dist E Y Y ball dist E
35 34 rspcev Y Y ball dist E d Y Y ball dist E
36 6 33 35 syl2anc φ X = d Y Y ball dist E
37 biidd c = d Y Y ball dist E d Y Y ball dist E
38 37 rspcev d Y Y ball dist E c d Y Y ball dist E
39 6 36 38 syl2anc φ X = c d Y Y ball dist E
40 oveq2 X = X =
41 qex V
42 mapdm0 V =
43 41 42 ax-mp =
44 43 a1i X = =
45 40 44 eqtr2d X = = X
46 45 eqcomd X = X =
47 46 eleq2d X = c X c
48 46 eleq2d X = d X d
49 48 anbi1d X = d X Y Y ball dist E d Y Y ball dist E
50 49 rexbidv2 X = d X Y Y ball dist E d Y Y ball dist E
51 47 50 anbi12d X = c X d X Y Y ball dist E c d Y Y ball dist E
52 51 rexbidv2 X = c X d X Y Y ball dist E c d Y Y ball dist E
53 52 adantl φ X = c X d X Y Y ball dist E c d Y Y ball dist E
54 39 53 mpbird φ X = c X d X Y Y ball dist E
55 ixpeq1 X = i X c i d i = i c i d i
56 ixp0x i c i d i =
57 56 a1i X = i c i d i =
58 55 57 eqtrd X = i X c i d i =
59 58 eleq2d X = Y i X c i d i Y
60 2fveq3 X = dist X = dist
61 60 fveq2d X = ball dist X = ball dist
62 61 oveqd X = Y ball dist X E = Y ball dist E
63 58 62 sseq12d X = i X c i d i Y ball dist X E Y ball dist E
64 59 63 anbi12d X = Y i X c i d i i X c i d i Y ball dist X E Y Y ball dist E
65 64 rexbidv X = d X Y i X c i d i i X c i d i Y ball dist X E d X Y Y ball dist E
66 65 rexbidv X = c X d X Y i X c i d i i X c i d i Y ball dist X E c X d X Y Y ball dist E
67 66 adantl φ X = c X d X Y i X c i d i i X c i d i Y ball dist X E c X d X Y Y ball dist E
68 54 67 mpbird φ X = c X d X Y i X c i d i i X c i d i Y ball dist X E
69 1 adantr φ ¬ X = X Fin
70 neqne ¬ X = X
71 70 adantl φ ¬ X = X
72 2 adantr φ ¬ X = Y X
73 3 adantr φ ¬ X = E +
74 69 71 72 73 hoiqssbllem3 φ ¬ X = c X d X Y i X c i d i i X c i d i Y ball dist X E
75 68 74 pm2.61dan φ c X d X Y i X c i d i i X c i d i Y ball dist X E