Step |
Hyp |
Ref |
Expression |
1 |
|
hoiqssbl.x |
|
2 |
|
hoiqssbl.y |
|
3 |
|
hoiqssbl.e |
|
4 |
|
0ex |
|
5 |
4
|
snid |
|
6 |
5
|
a1i |
|
7 |
2
|
adantr |
|
8 |
|
oveq2 |
|
9 |
|
reex |
|
10 |
|
mapdm0 |
|
11 |
9 10
|
ax-mp |
|
12 |
11
|
a1i |
|
13 |
8 12
|
eqtrd |
|
14 |
13
|
adantl |
|
15 |
7 14
|
eleqtrd |
|
16 |
|
0fin |
|
17 |
|
eqid |
|
18 |
17
|
rrxmetfi |
|
19 |
16 18
|
ax-mp |
|
20 |
|
metxmet |
|
21 |
19 20
|
ax-mp |
|
22 |
21
|
a1i |
|
23 |
6 11
|
eleqtrrdi |
|
24 |
3
|
adantr |
|
25 |
|
blcntr |
|
26 |
22 23 24 25
|
syl3anc |
|
27 |
|
elsni |
|
28 |
15 27
|
syl |
|
29 |
28
|
eqcomd |
|
30 |
29
|
oveq1d |
|
31 |
26 30
|
eleqtrd |
|
32 |
31
|
snssd |
|
33 |
15 32
|
jca |
|
34 |
|
biidd |
|
35 |
34
|
rspcev |
|
36 |
6 33 35
|
syl2anc |
|
37 |
|
biidd |
|
38 |
37
|
rspcev |
|
39 |
6 36 38
|
syl2anc |
|
40 |
|
oveq2 |
|
41 |
|
qex |
|
42 |
|
mapdm0 |
|
43 |
41 42
|
ax-mp |
|
44 |
43
|
a1i |
|
45 |
40 44
|
eqtr2d |
|
46 |
45
|
eqcomd |
|
47 |
46
|
eleq2d |
|
48 |
46
|
eleq2d |
|
49 |
48
|
anbi1d |
|
50 |
49
|
rexbidv2 |
|
51 |
47 50
|
anbi12d |
|
52 |
51
|
rexbidv2 |
|
53 |
52
|
adantl |
|
54 |
39 53
|
mpbird |
|
55 |
|
ixpeq1 |
|
56 |
|
ixp0x |
|
57 |
56
|
a1i |
|
58 |
55 57
|
eqtrd |
|
59 |
58
|
eleq2d |
|
60 |
|
2fveq3 |
|
61 |
60
|
fveq2d |
|
62 |
61
|
oveqd |
|
63 |
58 62
|
sseq12d |
|
64 |
59 63
|
anbi12d |
|
65 |
64
|
rexbidv |
|
66 |
65
|
rexbidv |
|
67 |
66
|
adantl |
|
68 |
54 67
|
mpbird |
|
69 |
1
|
adantr |
|
70 |
|
neqne |
|
71 |
70
|
adantl |
|
72 |
2
|
adantr |
|
73 |
3
|
adantr |
|
74 |
69 71 72 73
|
hoiqssbllem3 |
|
75 |
68 74
|
pm2.61dan |
|