Step |
Hyp |
Ref |
Expression |
1 |
|
hoiqssbllem3.x |
|
2 |
|
hoiqssbllem3.n |
|
3 |
|
hoiqssbllem3.y |
|
4 |
|
hoiqssbllem3.e |
|
5 |
|
qex |
|
6 |
5
|
inex1 |
|
7 |
6
|
a1i |
|
8 |
|
elmapi |
|
9 |
3 8
|
syl |
|
10 |
9
|
ffvelrnda |
|
11 |
|
2rp |
|
12 |
11
|
a1i |
|
13 |
|
hashnncl |
|
14 |
1 13
|
syl |
|
15 |
2 14
|
mpbird |
|
16 |
|
nnrp |
|
17 |
15 16
|
syl |
|
18 |
17
|
rpsqrtcld |
|
19 |
12 18
|
rpmulcld |
|
20 |
4 19
|
rpdivcld |
|
21 |
20
|
adantr |
|
22 |
10 21
|
ltsubrpd |
|
23 |
21
|
rpred |
|
24 |
10 23
|
resubcld |
|
25 |
24 10
|
ltnled |
|
26 |
22 25
|
mpbid |
|
27 |
24
|
rexrd |
|
28 |
10
|
rexrd |
|
29 |
27 28
|
qinioo |
|
30 |
26 29
|
mtbird |
|
31 |
30
|
neqned |
|
32 |
1 7 31
|
choicefi |
|
33 |
|
simpl |
|
34 |
|
nfra1 |
|
35 |
|
rspa |
|
36 |
|
elinel1 |
|
37 |
35 36
|
syl |
|
38 |
37
|
ex |
|
39 |
34 38
|
ralrimi |
|
40 |
39
|
adantl |
|
41 |
33 40
|
jca |
|
42 |
41
|
adantl |
|
43 |
|
ffnfv |
|
44 |
42 43
|
sylibr |
|
45 |
5
|
a1i |
|
46 |
|
elmapg |
|
47 |
45 1 46
|
syl2anc |
|
48 |
47
|
adantr |
|
49 |
44 48
|
mpbird |
|
50 |
|
simprr |
|
51 |
49 50
|
jca |
|
52 |
51
|
ex |
|
53 |
52
|
eximdv |
|
54 |
32 53
|
mpd |
|
55 |
|
df-rex |
|
56 |
54 55
|
sylibr |
|
57 |
5
|
inex1 |
|
58 |
57
|
a1i |
|
59 |
10 21
|
ltaddrpd |
|
60 |
10 23
|
readdcld |
|
61 |
10 60
|
ltnled |
|
62 |
59 61
|
mpbid |
|
63 |
60
|
rexrd |
|
64 |
28 63
|
qinioo |
|
65 |
62 64
|
mtbird |
|
66 |
65
|
neqned |
|
67 |
1 58 66
|
choicefi |
|
68 |
|
simpl |
|
69 |
|
nfra1 |
|
70 |
|
rspa |
|
71 |
|
elinel1 |
|
72 |
70 71
|
syl |
|
73 |
72
|
ex |
|
74 |
69 73
|
ralrimi |
|
75 |
74
|
adantl |
|
76 |
68 75
|
jca |
|
77 |
76
|
adantl |
|
78 |
|
ffnfv |
|
79 |
77 78
|
sylibr |
|
80 |
|
elmapg |
|
81 |
45 1 80
|
syl2anc |
|
82 |
81
|
adantr |
|
83 |
79 82
|
mpbird |
|
84 |
|
simprr |
|
85 |
83 84
|
jca |
|
86 |
85
|
ex |
|
87 |
86
|
eximdv |
|
88 |
67 87
|
mpd |
|
89 |
|
df-rex |
|
90 |
88 89
|
sylibr |
|
91 |
56 90
|
jca |
|
92 |
|
reeanv |
|
93 |
91 92
|
sylibr |
|
94 |
|
nfv |
|
95 |
34 69
|
nfan |
|
96 |
94 95
|
nfan |
|
97 |
1
|
ad3antrrr |
|
98 |
2
|
ad3antrrr |
|
99 |
3
|
ad3antrrr |
|
100 |
|
elmapi |
|
101 |
|
qssre |
|
102 |
101
|
a1i |
|
103 |
100 102
|
fssd |
|
104 |
103
|
adantl |
|
105 |
104
|
ad2antrr |
|
106 |
|
elmapi |
|
107 |
101
|
a1i |
|
108 |
106 107
|
fssd |
|
109 |
108
|
ad2antlr |
|
110 |
4
|
ad3antrrr |
|
111 |
35
|
elin2d |
|
112 |
111
|
adantlr |
|
113 |
112
|
adantll |
|
114 |
70
|
elin2d |
|
115 |
114
|
adantll |
|
116 |
115
|
adantll |
|
117 |
96 97 98 99 105 109 110 113 116
|
hoiqssbllem1 |
|
118 |
|
simpl |
|
119 |
|
fveq2 |
|
120 |
|
fveq2 |
|
121 |
120
|
oveq1d |
|
122 |
121 120
|
oveq12d |
|
123 |
122
|
ineq2d |
|
124 |
119 123
|
eleq12d |
|
125 |
124
|
cbvralvw |
|
126 |
125
|
biimpi |
|
127 |
126
|
adantr |
|
128 |
|
fveq2 |
|
129 |
120
|
oveq1d |
|
130 |
120 129
|
oveq12d |
|
131 |
130
|
ineq2d |
|
132 |
128 131
|
eleq12d |
|
133 |
132
|
cbvralvw |
|
134 |
133
|
biimpi |
|
135 |
134
|
adantl |
|
136 |
127 135
|
jca |
|
137 |
136
|
adantl |
|
138 |
|
nfv |
|
139 |
1
|
ad3antrrr |
|
140 |
2
|
ad3antrrr |
|
141 |
3
|
ad3antrrr |
|
142 |
104
|
ad2antrr |
|
143 |
108
|
ad2antlr |
|
144 |
4
|
ad3antrrr |
|
145 |
125 111
|
sylanbr |
|
146 |
145
|
adantlr |
|
147 |
146
|
adantll |
|
148 |
133 114
|
sylanbr |
|
149 |
148
|
adantll |
|
150 |
149
|
adantll |
|
151 |
138 139 140 141 142 143 144 147 150
|
hoiqssbllem2 |
|
152 |
118 137 151
|
syl2anc |
|
153 |
117 152
|
jca |
|
154 |
153
|
ex |
|
155 |
154
|
reximdva |
|
156 |
155
|
reximdva |
|
157 |
93 156
|
mpd |
|