Metamath Proof Explorer


Theorem opnvonmbl

Description: An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses opnvonmbl.x
|- ( ph -> X e. Fin )
opnvonmbl.s
|- S = dom ( voln ` X )
opnvonmbl.g
|- ( ph -> G e. ( TopOpen ` ( RR^ ` X ) ) )
Assertion opnvonmbl
|- ( ph -> G e. S )

Proof

Step Hyp Ref Expression
1 opnvonmbl.x
 |-  ( ph -> X e. Fin )
2 opnvonmbl.s
 |-  S = dom ( voln ` X )
3 opnvonmbl.g
 |-  ( ph -> G e. ( TopOpen ` ( RR^ ` X ) ) )
4 fveq2
 |-  ( k = i -> ( ( [,) o. f ) ` k ) = ( ( [,) o. f ) ` i ) )
5 4 cbvixpv
 |-  X_ k e. X ( ( [,) o. f ) ` k ) = X_ i e. X ( ( [,) o. f ) ` i )
6 5 a1i
 |-  ( f = h -> X_ k e. X ( ( [,) o. f ) ` k ) = X_ i e. X ( ( [,) o. f ) ` i ) )
7 coeq2
 |-  ( f = h -> ( [,) o. f ) = ( [,) o. h ) )
8 7 fveq1d
 |-  ( f = h -> ( ( [,) o. f ) ` i ) = ( ( [,) o. h ) ` i ) )
9 8 ixpeq2dv
 |-  ( f = h -> X_ i e. X ( ( [,) o. f ) ` i ) = X_ i e. X ( ( [,) o. h ) ` i ) )
10 6 9 eqtrd
 |-  ( f = h -> X_ k e. X ( ( [,) o. f ) ` k ) = X_ i e. X ( ( [,) o. h ) ` i ) )
11 10 sseq1d
 |-  ( f = h -> ( X_ k e. X ( ( [,) o. f ) ` k ) C_ G <-> X_ i e. X ( ( [,) o. h ) ` i ) C_ G ) )
12 11 cbvrabv
 |-  { f e. ( ( QQ X. QQ ) ^m X ) | X_ k e. X ( ( [,) o. f ) ` k ) C_ G } = { h e. ( ( QQ X. QQ ) ^m X ) | X_ i e. X ( ( [,) o. h ) ` i ) C_ G }
13 1 2 3 12 opnvonmbllem2
 |-  ( ph -> G e. S )