Metamath Proof Explorer


Theorem opnvonmbl

Description: An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses opnvonmbl.x φ X Fin
opnvonmbl.s S = dom voln X
opnvonmbl.g φ G TopOpen X
Assertion opnvonmbl φ G S

Proof

Step Hyp Ref Expression
1 opnvonmbl.x φ X Fin
2 opnvonmbl.s S = dom voln X
3 opnvonmbl.g φ G TopOpen X
4 fveq2 k = i . f k = . f i
5 4 cbvixpv k X . f k = i X . f i
6 5 a1i f = h k X . f k = i X . f i
7 coeq2 f = h . f = . h
8 7 fveq1d f = h . f i = . h i
9 8 ixpeq2dv f = h i X . f i = i X . h i
10 6 9 eqtrd f = h k X . f k = i X . h i
11 10 sseq1d f = h k X . f k G i X . h i G
12 11 cbvrabv f × X | k X . f k G = h × X | i X . h i G
13 1 2 3 12 opnvonmbllem2 φ G S