Metamath Proof Explorer


Theorem opnvonmbl

Description: An open subset of the n-dimensional Real numbers is Lebesgue measurable. This is Proposition 115G (a) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses opnvonmbl.x ( 𝜑𝑋 ∈ Fin )
opnvonmbl.s 𝑆 = dom ( voln ‘ 𝑋 )
opnvonmbl.g ( 𝜑𝐺 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) )
Assertion opnvonmbl ( 𝜑𝐺𝑆 )

Proof

Step Hyp Ref Expression
1 opnvonmbl.x ( 𝜑𝑋 ∈ Fin )
2 opnvonmbl.s 𝑆 = dom ( voln ‘ 𝑋 )
3 opnvonmbl.g ( 𝜑𝐺 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) )
4 fveq2 ( 𝑘 = 𝑖 → ( ( [,) ∘ 𝑓 ) ‘ 𝑘 ) = ( ( [,) ∘ 𝑓 ) ‘ 𝑖 ) )
5 4 cbvixpv X 𝑘𝑋 ( ( [,) ∘ 𝑓 ) ‘ 𝑘 ) = X 𝑖𝑋 ( ( [,) ∘ 𝑓 ) ‘ 𝑖 )
6 5 a1i ( 𝑓 = X 𝑘𝑋 ( ( [,) ∘ 𝑓 ) ‘ 𝑘 ) = X 𝑖𝑋 ( ( [,) ∘ 𝑓 ) ‘ 𝑖 ) )
7 coeq2 ( 𝑓 = → ( [,) ∘ 𝑓 ) = ( [,) ∘ ) )
8 7 fveq1d ( 𝑓 = → ( ( [,) ∘ 𝑓 ) ‘ 𝑖 ) = ( ( [,) ∘ ) ‘ 𝑖 ) )
9 8 ixpeq2dv ( 𝑓 = X 𝑖𝑋 ( ( [,) ∘ 𝑓 ) ‘ 𝑖 ) = X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) )
10 6 9 eqtrd ( 𝑓 = X 𝑘𝑋 ( ( [,) ∘ 𝑓 ) ‘ 𝑘 ) = X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) )
11 10 sseq1d ( 𝑓 = → ( X 𝑘𝑋 ( ( [,) ∘ 𝑓 ) ‘ 𝑘 ) ⊆ 𝐺X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ⊆ 𝐺 ) )
12 11 cbvrabv { 𝑓 ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑘𝑋 ( ( [,) ∘ 𝑓 ) ‘ 𝑘 ) ⊆ 𝐺 } = { ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑖𝑋 ( ( [,) ∘ ) ‘ 𝑖 ) ⊆ 𝐺 }
13 1 2 3 12 opnvonmbllem2 ( 𝜑𝐺𝑆 )