Step |
Hyp |
Ref |
Expression |
1 |
|
opnvonmbl.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
opnvonmbl.s |
⊢ 𝑆 = dom ( voln ‘ 𝑋 ) |
3 |
|
opnvonmbl.g |
⊢ ( 𝜑 → 𝐺 ∈ ( TopOpen ‘ ( ℝ^ ‘ 𝑋 ) ) ) |
4 |
|
fveq2 |
⊢ ( 𝑘 = 𝑖 → ( ( [,) ∘ 𝑓 ) ‘ 𝑘 ) = ( ( [,) ∘ 𝑓 ) ‘ 𝑖 ) ) |
5 |
4
|
cbvixpv |
⊢ X 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝑓 ) ‘ 𝑘 ) = X 𝑖 ∈ 𝑋 ( ( [,) ∘ 𝑓 ) ‘ 𝑖 ) |
6 |
5
|
a1i |
⊢ ( 𝑓 = ℎ → X 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝑓 ) ‘ 𝑘 ) = X 𝑖 ∈ 𝑋 ( ( [,) ∘ 𝑓 ) ‘ 𝑖 ) ) |
7 |
|
coeq2 |
⊢ ( 𝑓 = ℎ → ( [,) ∘ 𝑓 ) = ( [,) ∘ ℎ ) ) |
8 |
7
|
fveq1d |
⊢ ( 𝑓 = ℎ → ( ( [,) ∘ 𝑓 ) ‘ 𝑖 ) = ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) |
9 |
8
|
ixpeq2dv |
⊢ ( 𝑓 = ℎ → X 𝑖 ∈ 𝑋 ( ( [,) ∘ 𝑓 ) ‘ 𝑖 ) = X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) |
10 |
6 9
|
eqtrd |
⊢ ( 𝑓 = ℎ → X 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝑓 ) ‘ 𝑘 ) = X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ) |
11 |
10
|
sseq1d |
⊢ ( 𝑓 = ℎ → ( X 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝑓 ) ‘ 𝑘 ) ⊆ 𝐺 ↔ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ⊆ 𝐺 ) ) |
12 |
11
|
cbvrabv |
⊢ { 𝑓 ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑘 ∈ 𝑋 ( ( [,) ∘ 𝑓 ) ‘ 𝑘 ) ⊆ 𝐺 } = { ℎ ∈ ( ( ℚ × ℚ ) ↑m 𝑋 ) ∣ X 𝑖 ∈ 𝑋 ( ( [,) ∘ ℎ ) ‘ 𝑖 ) ⊆ 𝐺 } |
13 |
1 2 3 12
|
opnvonmbllem2 |
⊢ ( 𝜑 → 𝐺 ∈ 𝑆 ) |