| Step |
Hyp |
Ref |
Expression |
| 1 |
|
opnvonmbllem1.i |
|- F/ i ph |
| 2 |
|
opnvonmbllem1.x |
|- ( ph -> X e. V ) |
| 3 |
|
opnvonmbllem1.c |
|- ( ph -> C : X --> QQ ) |
| 4 |
|
opnvonmbllem1.d |
|- ( ph -> D : X --> QQ ) |
| 5 |
|
opnvonmbllem1.s |
|- ( ph -> X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) C_ B ) |
| 6 |
|
opnvonmbllem1.g |
|- ( ph -> B C_ G ) |
| 7 |
|
opnvonmbllem1.y |
|- ( ph -> Y e. X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) |
| 8 |
|
opnvonmbllem1.k |
|- K = { h e. ( ( QQ X. QQ ) ^m X ) | X_ i e. X ( ( [,) o. h ) ` i ) C_ G } |
| 9 |
|
opnvonmbllem1.h |
|- H = ( i e. X |-> <. ( C ` i ) , ( D ` i ) >. ) |
| 10 |
3
|
ffvelcdmda |
|- ( ( ph /\ i e. X ) -> ( C ` i ) e. QQ ) |
| 11 |
4
|
ffvelcdmda |
|- ( ( ph /\ i e. X ) -> ( D ` i ) e. QQ ) |
| 12 |
|
opelxpi |
|- ( ( ( C ` i ) e. QQ /\ ( D ` i ) e. QQ ) -> <. ( C ` i ) , ( D ` i ) >. e. ( QQ X. QQ ) ) |
| 13 |
10 11 12
|
syl2anc |
|- ( ( ph /\ i e. X ) -> <. ( C ` i ) , ( D ` i ) >. e. ( QQ X. QQ ) ) |
| 14 |
1 13 9
|
fmptdf |
|- ( ph -> H : X --> ( QQ X. QQ ) ) |
| 15 |
|
qex |
|- QQ e. _V |
| 16 |
15 15
|
xpex |
|- ( QQ X. QQ ) e. _V |
| 17 |
16
|
a1i |
|- ( ph -> ( QQ X. QQ ) e. _V ) |
| 18 |
17 2
|
jca |
|- ( ph -> ( ( QQ X. QQ ) e. _V /\ X e. V ) ) |
| 19 |
|
elmapg |
|- ( ( ( QQ X. QQ ) e. _V /\ X e. V ) -> ( H e. ( ( QQ X. QQ ) ^m X ) <-> H : X --> ( QQ X. QQ ) ) ) |
| 20 |
18 19
|
syl |
|- ( ph -> ( H e. ( ( QQ X. QQ ) ^m X ) <-> H : X --> ( QQ X. QQ ) ) ) |
| 21 |
14 20
|
mpbird |
|- ( ph -> H e. ( ( QQ X. QQ ) ^m X ) ) |
| 22 |
1 9
|
hoi2toco |
|- ( ph -> X_ i e. X ( ( [,) o. H ) ` i ) = X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) ) |
| 23 |
5 6
|
sstrd |
|- ( ph -> X_ i e. X ( ( C ` i ) [,) ( D ` i ) ) C_ G ) |
| 24 |
22 23
|
eqsstrd |
|- ( ph -> X_ i e. X ( ( [,) o. H ) ` i ) C_ G ) |
| 25 |
21 24
|
jca |
|- ( ph -> ( H e. ( ( QQ X. QQ ) ^m X ) /\ X_ i e. X ( ( [,) o. H ) ` i ) C_ G ) ) |
| 26 |
|
nfcv |
|- F/_ i h |
| 27 |
|
nfmpt1 |
|- F/_ i ( i e. X |-> <. ( C ` i ) , ( D ` i ) >. ) |
| 28 |
9 27
|
nfcxfr |
|- F/_ i H |
| 29 |
26 28
|
nfeq |
|- F/ i h = H |
| 30 |
|
coeq2 |
|- ( h = H -> ( [,) o. h ) = ( [,) o. H ) ) |
| 31 |
30
|
fveq1d |
|- ( h = H -> ( ( [,) o. h ) ` i ) = ( ( [,) o. H ) ` i ) ) |
| 32 |
31
|
adantr |
|- ( ( h = H /\ i e. X ) -> ( ( [,) o. h ) ` i ) = ( ( [,) o. H ) ` i ) ) |
| 33 |
29 32
|
ixpeq2d |
|- ( h = H -> X_ i e. X ( ( [,) o. h ) ` i ) = X_ i e. X ( ( [,) o. H ) ` i ) ) |
| 34 |
33
|
sseq1d |
|- ( h = H -> ( X_ i e. X ( ( [,) o. h ) ` i ) C_ G <-> X_ i e. X ( ( [,) o. H ) ` i ) C_ G ) ) |
| 35 |
34 8
|
elrab2 |
|- ( H e. K <-> ( H e. ( ( QQ X. QQ ) ^m X ) /\ X_ i e. X ( ( [,) o. H ) ` i ) C_ G ) ) |
| 36 |
25 35
|
sylibr |
|- ( ph -> H e. K ) |
| 37 |
7 22
|
eleqtrrd |
|- ( ph -> Y e. X_ i e. X ( ( [,) o. H ) ` i ) ) |
| 38 |
|
nfv |
|- F/ h Y e. X_ i e. X ( ( [,) o. H ) ` i ) |
| 39 |
|
nfcv |
|- F/_ h H |
| 40 |
|
nfrab1 |
|- F/_ h { h e. ( ( QQ X. QQ ) ^m X ) | X_ i e. X ( ( [,) o. h ) ` i ) C_ G } |
| 41 |
8 40
|
nfcxfr |
|- F/_ h K |
| 42 |
33
|
eleq2d |
|- ( h = H -> ( Y e. X_ i e. X ( ( [,) o. h ) ` i ) <-> Y e. X_ i e. X ( ( [,) o. H ) ` i ) ) ) |
| 43 |
38 39 41 42
|
rspcef |
|- ( ( H e. K /\ Y e. X_ i e. X ( ( [,) o. H ) ` i ) ) -> E. h e. K Y e. X_ i e. X ( ( [,) o. h ) ` i ) ) |
| 44 |
36 37 43
|
syl2anc |
|- ( ph -> E. h e. K Y e. X_ i e. X ( ( [,) o. h ) ` i ) ) |