Step |
Hyp |
Ref |
Expression |
1 |
|
hoimbl.x |
|- ( ph -> X e. Fin ) |
2 |
|
hoimbl.s |
|- S = dom ( voln ` X ) |
3 |
|
hoimbl.a |
|- ( ph -> A : X --> RR ) |
4 |
|
hoimbl.b |
|- ( ph -> B : X --> RR ) |
5 |
1
|
adantr |
|- ( ( ph /\ X = (/) ) -> X e. Fin ) |
6 |
5
|
rrnmbl |
|- ( ( ph /\ X = (/) ) -> ( RR ^m X ) e. dom ( voln ` X ) ) |
7 |
|
reex |
|- RR e. _V |
8 |
|
mapdm0 |
|- ( RR e. _V -> ( RR ^m (/) ) = { (/) } ) |
9 |
7 8
|
ax-mp |
|- ( RR ^m (/) ) = { (/) } |
10 |
9
|
eqcomi |
|- { (/) } = ( RR ^m (/) ) |
11 |
10
|
a1i |
|- ( X = (/) -> { (/) } = ( RR ^m (/) ) ) |
12 |
|
id |
|- ( X = (/) -> X = (/) ) |
13 |
12
|
ixpeq1d |
|- ( X = (/) -> X_ i e. X ( ( A ` i ) [,) ( B ` i ) ) = X_ i e. (/) ( ( A ` i ) [,) ( B ` i ) ) ) |
14 |
|
ixp0x |
|- X_ i e. (/) ( ( A ` i ) [,) ( B ` i ) ) = { (/) } |
15 |
14
|
a1i |
|- ( X = (/) -> X_ i e. (/) ( ( A ` i ) [,) ( B ` i ) ) = { (/) } ) |
16 |
13 15
|
eqtrd |
|- ( X = (/) -> X_ i e. X ( ( A ` i ) [,) ( B ` i ) ) = { (/) } ) |
17 |
|
oveq2 |
|- ( X = (/) -> ( RR ^m X ) = ( RR ^m (/) ) ) |
18 |
11 16 17
|
3eqtr4d |
|- ( X = (/) -> X_ i e. X ( ( A ` i ) [,) ( B ` i ) ) = ( RR ^m X ) ) |
19 |
18
|
adantl |
|- ( ( ph /\ X = (/) ) -> X_ i e. X ( ( A ` i ) [,) ( B ` i ) ) = ( RR ^m X ) ) |
20 |
2
|
a1i |
|- ( ( ph /\ X = (/) ) -> S = dom ( voln ` X ) ) |
21 |
19 20
|
eleq12d |
|- ( ( ph /\ X = (/) ) -> ( X_ i e. X ( ( A ` i ) [,) ( B ` i ) ) e. S <-> ( RR ^m X ) e. dom ( voln ` X ) ) ) |
22 |
6 21
|
mpbird |
|- ( ( ph /\ X = (/) ) -> X_ i e. X ( ( A ` i ) [,) ( B ` i ) ) e. S ) |
23 |
1
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> X e. Fin ) |
24 |
12
|
necon3bi |
|- ( -. X = (/) -> X =/= (/) ) |
25 |
24
|
adantl |
|- ( ( ph /\ -. X = (/) ) -> X =/= (/) ) |
26 |
3
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> A : X --> RR ) |
27 |
4
|
adantr |
|- ( ( ph /\ -. X = (/) ) -> B : X --> RR ) |
28 |
|
id |
|- ( w = x -> w = x ) |
29 |
|
eqidd |
|- ( w = x -> RR = RR ) |
30 |
28
|
ixpeq1d |
|- ( w = x -> X_ j e. w if ( j = h , ( -oo (,) z ) , RR ) = X_ j e. x if ( j = h , ( -oo (,) z ) , RR ) ) |
31 |
|
eqeq1 |
|- ( j = i -> ( j = h <-> i = h ) ) |
32 |
31
|
ifbid |
|- ( j = i -> if ( j = h , ( -oo (,) z ) , RR ) = if ( i = h , ( -oo (,) z ) , RR ) ) |
33 |
32
|
cbvixpv |
|- X_ j e. x if ( j = h , ( -oo (,) z ) , RR ) = X_ i e. x if ( i = h , ( -oo (,) z ) , RR ) |
34 |
33
|
a1i |
|- ( w = x -> X_ j e. x if ( j = h , ( -oo (,) z ) , RR ) = X_ i e. x if ( i = h , ( -oo (,) z ) , RR ) ) |
35 |
30 34
|
eqtrd |
|- ( w = x -> X_ j e. w if ( j = h , ( -oo (,) z ) , RR ) = X_ i e. x if ( i = h , ( -oo (,) z ) , RR ) ) |
36 |
28 29 35
|
mpoeq123dv |
|- ( w = x -> ( h e. w , z e. RR |-> X_ j e. w if ( j = h , ( -oo (,) z ) , RR ) ) = ( h e. x , z e. RR |-> X_ i e. x if ( i = h , ( -oo (,) z ) , RR ) ) ) |
37 |
|
eqeq2 |
|- ( h = l -> ( i = h <-> i = l ) ) |
38 |
37
|
ifbid |
|- ( h = l -> if ( i = h , ( -oo (,) z ) , RR ) = if ( i = l , ( -oo (,) z ) , RR ) ) |
39 |
38
|
ixpeq2dv |
|- ( h = l -> X_ i e. x if ( i = h , ( -oo (,) z ) , RR ) = X_ i e. x if ( i = l , ( -oo (,) z ) , RR ) ) |
40 |
|
oveq2 |
|- ( z = y -> ( -oo (,) z ) = ( -oo (,) y ) ) |
41 |
40
|
ifeq1d |
|- ( z = y -> if ( i = l , ( -oo (,) z ) , RR ) = if ( i = l , ( -oo (,) y ) , RR ) ) |
42 |
41
|
ixpeq2dv |
|- ( z = y -> X_ i e. x if ( i = l , ( -oo (,) z ) , RR ) = X_ i e. x if ( i = l , ( -oo (,) y ) , RR ) ) |
43 |
39 42
|
cbvmpov |
|- ( h e. x , z e. RR |-> X_ i e. x if ( i = h , ( -oo (,) z ) , RR ) ) = ( l e. x , y e. RR |-> X_ i e. x if ( i = l , ( -oo (,) y ) , RR ) ) |
44 |
43
|
a1i |
|- ( w = x -> ( h e. x , z e. RR |-> X_ i e. x if ( i = h , ( -oo (,) z ) , RR ) ) = ( l e. x , y e. RR |-> X_ i e. x if ( i = l , ( -oo (,) y ) , RR ) ) ) |
45 |
36 44
|
eqtrd |
|- ( w = x -> ( h e. w , z e. RR |-> X_ j e. w if ( j = h , ( -oo (,) z ) , RR ) ) = ( l e. x , y e. RR |-> X_ i e. x if ( i = l , ( -oo (,) y ) , RR ) ) ) |
46 |
45
|
cbvmptv |
|- ( w e. Fin |-> ( h e. w , z e. RR |-> X_ j e. w if ( j = h , ( -oo (,) z ) , RR ) ) ) = ( x e. Fin |-> ( l e. x , y e. RR |-> X_ i e. x if ( i = l , ( -oo (,) y ) , RR ) ) ) |
47 |
23 25 2 26 27 46
|
hoimbllem |
|- ( ( ph /\ -. X = (/) ) -> X_ i e. X ( ( A ` i ) [,) ( B ` i ) ) e. S ) |
48 |
22 47
|
pm2.61dan |
|- ( ph -> X_ i e. X ( ( A ` i ) [,) ( B ` i ) ) e. S ) |