Metamath Proof Explorer


Theorem rrnmbl

Description: The set of n-dimensional Real numbers is Lebesgue measurable. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrnmbl.1
|- ( ph -> X e. Fin )
Assertion rrnmbl
|- ( ph -> ( RR ^m X ) e. dom ( voln ` X ) )

Proof

Step Hyp Ref Expression
1 rrnmbl.1
 |-  ( ph -> X e. Fin )
2 1 ovnome
 |-  ( ph -> ( voln* ` X ) e. OutMeas )
3 eqid
 |-  U. dom ( voln* ` X ) = U. dom ( voln* ` X )
4 eqid
 |-  ( CaraGen ` ( voln* ` X ) ) = ( CaraGen ` ( voln* ` X ) )
5 2 3 4 caragenunidm
 |-  ( ph -> U. dom ( voln* ` X ) e. ( CaraGen ` ( voln* ` X ) ) )
6 1 dmovn
 |-  ( ph -> dom ( voln* ` X ) = ~P ( RR ^m X ) )
7 6 unieqd
 |-  ( ph -> U. dom ( voln* ` X ) = U. ~P ( RR ^m X ) )
8 unipw
 |-  U. ~P ( RR ^m X ) = ( RR ^m X )
9 8 a1i
 |-  ( ph -> U. ~P ( RR ^m X ) = ( RR ^m X ) )
10 7 9 eqtr2d
 |-  ( ph -> ( RR ^m X ) = U. dom ( voln* ` X ) )
11 1 dmvon
 |-  ( ph -> dom ( voln ` X ) = ( CaraGen ` ( voln* ` X ) ) )
12 10 11 eleq12d
 |-  ( ph -> ( ( RR ^m X ) e. dom ( voln ` X ) <-> U. dom ( voln* ` X ) e. ( CaraGen ` ( voln* ` X ) ) ) )
13 5 12 mpbird
 |-  ( ph -> ( RR ^m X ) e. dom ( voln ` X ) )