Metamath Proof Explorer


Theorem rrnmbl

Description: The set of n-dimensional Real numbers is Lebesgue measurable. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrnmbl.1 ( 𝜑𝑋 ∈ Fin )
Assertion rrnmbl ( 𝜑 → ( ℝ ↑m 𝑋 ) ∈ dom ( voln ‘ 𝑋 ) )

Proof

Step Hyp Ref Expression
1 rrnmbl.1 ( 𝜑𝑋 ∈ Fin )
2 1 ovnome ( 𝜑 → ( voln* ‘ 𝑋 ) ∈ OutMeas )
3 eqid dom ( voln* ‘ 𝑋 ) = dom ( voln* ‘ 𝑋 )
4 eqid ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) )
5 2 3 4 caragenunidm ( 𝜑 dom ( voln* ‘ 𝑋 ) ∈ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) )
6 1 dmovn ( 𝜑 → dom ( voln* ‘ 𝑋 ) = 𝒫 ( ℝ ↑m 𝑋 ) )
7 6 unieqd ( 𝜑 dom ( voln* ‘ 𝑋 ) = 𝒫 ( ℝ ↑m 𝑋 ) )
8 unipw 𝒫 ( ℝ ↑m 𝑋 ) = ( ℝ ↑m 𝑋 )
9 8 a1i ( 𝜑 𝒫 ( ℝ ↑m 𝑋 ) = ( ℝ ↑m 𝑋 ) )
10 7 9 eqtr2d ( 𝜑 → ( ℝ ↑m 𝑋 ) = dom ( voln* ‘ 𝑋 ) )
11 1 dmvon ( 𝜑 → dom ( voln ‘ 𝑋 ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) )
12 10 11 eleq12d ( 𝜑 → ( ( ℝ ↑m 𝑋 ) ∈ dom ( voln ‘ 𝑋 ) ↔ dom ( voln* ‘ 𝑋 ) ∈ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) )
13 5 12 mpbird ( 𝜑 → ( ℝ ↑m 𝑋 ) ∈ dom ( voln ‘ 𝑋 ) )