| Step |
Hyp |
Ref |
Expression |
| 1 |
|
rrnmbl.1 |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 2 |
1
|
ovnome |
⊢ ( 𝜑 → ( voln* ‘ 𝑋 ) ∈ OutMeas ) |
| 3 |
|
eqid |
⊢ ∪ dom ( voln* ‘ 𝑋 ) = ∪ dom ( voln* ‘ 𝑋 ) |
| 4 |
|
eqid |
⊢ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) |
| 5 |
2 3 4
|
caragenunidm |
⊢ ( 𝜑 → ∪ dom ( voln* ‘ 𝑋 ) ∈ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |
| 6 |
1
|
dmovn |
⊢ ( 𝜑 → dom ( voln* ‘ 𝑋 ) = 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 7 |
6
|
unieqd |
⊢ ( 𝜑 → ∪ dom ( voln* ‘ 𝑋 ) = ∪ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 8 |
|
unipw |
⊢ ∪ 𝒫 ( ℝ ↑m 𝑋 ) = ( ℝ ↑m 𝑋 ) |
| 9 |
8
|
a1i |
⊢ ( 𝜑 → ∪ 𝒫 ( ℝ ↑m 𝑋 ) = ( ℝ ↑m 𝑋 ) ) |
| 10 |
7 9
|
eqtr2d |
⊢ ( 𝜑 → ( ℝ ↑m 𝑋 ) = ∪ dom ( voln* ‘ 𝑋 ) ) |
| 11 |
1
|
dmvon |
⊢ ( 𝜑 → dom ( voln ‘ 𝑋 ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |
| 12 |
10 11
|
eleq12d |
⊢ ( 𝜑 → ( ( ℝ ↑m 𝑋 ) ∈ dom ( voln ‘ 𝑋 ) ↔ ∪ dom ( voln* ‘ 𝑋 ) ∈ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) ) |
| 13 |
5 12
|
mpbird |
⊢ ( 𝜑 → ( ℝ ↑m 𝑋 ) ∈ dom ( voln ‘ 𝑋 ) ) |