Metamath Proof Explorer


Theorem rrnmbl

Description: The set of n-dimensional Real numbers is Lebesgue measurable. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypothesis rrnmbl.1 φXFin
Assertion rrnmbl φXdomvolnX

Proof

Step Hyp Ref Expression
1 rrnmbl.1 φXFin
2 1 ovnome φvoln*XOutMeas
3 eqid domvoln*X=domvoln*X
4 eqid CaraGenvoln*X=CaraGenvoln*X
5 2 3 4 caragenunidm φdomvoln*XCaraGenvoln*X
6 1 dmovn φdomvoln*X=𝒫X
7 6 unieqd φdomvoln*X=𝒫X
8 unipw 𝒫X=X
9 8 a1i φ𝒫X=X
10 7 9 eqtr2d φX=domvoln*X
11 1 dmvon φdomvolnX=CaraGenvoln*X
12 10 11 eleq12d φXdomvolnXdomvoln*XCaraGenvoln*X
13 5 12 mpbird φXdomvolnX