Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020)
Ref | Expression | ||
---|---|---|---|
Hypotheses | hoimbl.x | |
|
hoimbl.s | |
||
hoimbl.a | |
||
hoimbl.b | |
||
Assertion | hoimbl | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | hoimbl.x | |
|
2 | hoimbl.s | |
|
3 | hoimbl.a | |
|
4 | hoimbl.b | |
|
5 | 1 | adantr | |
6 | 5 | rrnmbl | |
7 | reex | |
|
8 | mapdm0 | |
|
9 | 7 8 | ax-mp | |
10 | 9 | eqcomi | |
11 | 10 | a1i | |
12 | id | |
|
13 | 12 | ixpeq1d | |
14 | ixp0x | |
|
15 | 14 | a1i | |
16 | 13 15 | eqtrd | |
17 | oveq2 | |
|
18 | 11 16 17 | 3eqtr4d | |
19 | 18 | adantl | |
20 | 2 | a1i | |
21 | 19 20 | eleq12d | |
22 | 6 21 | mpbird | |
23 | 1 | adantr | |
24 | 12 | necon3bi | |
25 | 24 | adantl | |
26 | 3 | adantr | |
27 | 4 | adantr | |
28 | id | |
|
29 | eqidd | |
|
30 | 28 | ixpeq1d | |
31 | eqeq1 | |
|
32 | 31 | ifbid | |
33 | 32 | cbvixpv | |
34 | 33 | a1i | |
35 | 30 34 | eqtrd | |
36 | 28 29 35 | mpoeq123dv | |
37 | eqeq2 | |
|
38 | 37 | ifbid | |
39 | 38 | ixpeq2dv | |
40 | oveq2 | |
|
41 | 40 | ifeq1d | |
42 | 41 | ixpeq2dv | |
43 | 39 42 | cbvmpov | |
44 | 43 | a1i | |
45 | 36 44 | eqtrd | |
46 | 45 | cbvmptv | |
47 | 23 25 2 26 27 46 | hoimbllem | |
48 | 22 47 | pm2.61dan | |