Metamath Proof Explorer


Theorem hoimbl

Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses hoimbl.x φXFin
hoimbl.s S=domvolnX
hoimbl.a φA:X
hoimbl.b φB:X
Assertion hoimbl φiXAiBiS

Proof

Step Hyp Ref Expression
1 hoimbl.x φXFin
2 hoimbl.s S=domvolnX
3 hoimbl.a φA:X
4 hoimbl.b φB:X
5 1 adantr φX=XFin
6 5 rrnmbl φX=XdomvolnX
7 reex V
8 mapdm0 V=
9 7 8 ax-mp =
10 9 eqcomi =
11 10 a1i X==
12 id X=X=
13 12 ixpeq1d X=iXAiBi=iAiBi
14 ixp0x iAiBi=
15 14 a1i X=iAiBi=
16 13 15 eqtrd X=iXAiBi=
17 oveq2 X=X=
18 11 16 17 3eqtr4d X=iXAiBi=X
19 18 adantl φX=iXAiBi=X
20 2 a1i φX=S=domvolnX
21 19 20 eleq12d φX=iXAiBiSXdomvolnX
22 6 21 mpbird φX=iXAiBiS
23 1 adantr φ¬X=XFin
24 12 necon3bi ¬X=X
25 24 adantl φ¬X=X
26 3 adantr φ¬X=A:X
27 4 adantr φ¬X=B:X
28 id w=xw=x
29 eqidd w=x=
30 28 ixpeq1d w=xjwifj=h−∞z=jxifj=h−∞z
31 eqeq1 j=ij=hi=h
32 31 ifbid j=iifj=h−∞z=ifi=h−∞z
33 32 cbvixpv jxifj=h−∞z=ixifi=h−∞z
34 33 a1i w=xjxifj=h−∞z=ixifi=h−∞z
35 30 34 eqtrd w=xjwifj=h−∞z=ixifi=h−∞z
36 28 29 35 mpoeq123dv w=xhw,zjwifj=h−∞z=hx,zixifi=h−∞z
37 eqeq2 h=li=hi=l
38 37 ifbid h=lifi=h−∞z=ifi=l−∞z
39 38 ixpeq2dv h=lixifi=h−∞z=ixifi=l−∞z
40 oveq2 z=y−∞z=−∞y
41 40 ifeq1d z=yifi=l−∞z=ifi=l−∞y
42 41 ixpeq2dv z=yixifi=l−∞z=ixifi=l−∞y
43 39 42 cbvmpov hx,zixifi=h−∞z=lx,yixifi=l−∞y
44 43 a1i w=xhx,zixifi=h−∞z=lx,yixifi=l−∞y
45 36 44 eqtrd w=xhw,zjwifj=h−∞z=lx,yixifi=l−∞y
46 45 cbvmptv wFinhw,zjwifj=h−∞z=xFinlx,yixifi=l−∞y
47 23 25 2 26 27 46 hoimbllem φ¬X=iXAiBiS
48 22 47 pm2.61dan φiXAiBiS