Metamath Proof Explorer


Theorem hoimbllem

Description: Any n-dimensional half-open interval is Lebesgue measurable. This is a substep of Proposition 115G (a) of Fremlin1 p. 32. (Contributed by Glauco Siliprandi, 24-Dec-2020)

Ref Expression
Hypotheses hoimbllem.x φXFin
hoimbllem.n φX
hoimbllem.s S=domvolnX
hoimbllem.a φA:X
hoimbllem.b φB:X
hoimbllem.h H=xFinlx,yixifi=l−∞y
Assertion hoimbllem φiXAiBiS

Proof

Step Hyp Ref Expression
1 hoimbllem.x φXFin
2 hoimbllem.n φX
3 hoimbllem.s S=domvolnX
4 hoimbllem.a φA:X
5 hoimbllem.b φB:X
6 hoimbllem.h H=xFinlx,yixifi=l−∞y
7 1 2 4 5 6 hspdifhsp φiXAiBi=iXiHXBiiHXAi
8 1 vonmea φvolnXMeas
9 8 3 dmmeasal φSSAlg
10 fict XFinXω
11 1 10 syl φXω
12 9 adantr φiXSSAlg
13 1 adantr φiXXFin
14 simpr φiXiX
15 5 adantr φiXB:X
16 15 14 ffvelcdmd φiXBi
17 6 13 14 16 hspmbl φiXiHXBidomvolnX
18 3 eqcomi domvolnX=S
19 18 a1i φiXdomvolnX=S
20 17 19 eleqtrd φiXiHXBiS
21 4 ffvelcdmda φiXAi
22 6 13 14 21 hspmbl φiXiHXAidomvolnX
23 22 19 eleqtrd φiXiHXAiS
24 saldifcl2 SSAlgiHXBiSiHXAiSiHXBiiHXAiS
25 12 20 23 24 syl3anc φiXiHXBiiHXAiS
26 9 11 2 25 saliincl φiXiHXBiiHXAiS
27 7 26 eqeltrd φiXAiBiS