Step |
Hyp |
Ref |
Expression |
1 |
|
hoimbllem.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
2 |
|
hoimbllem.n |
⊢ ( 𝜑 → 𝑋 ≠ ∅ ) |
3 |
|
hoimbllem.s |
⊢ 𝑆 = dom ( voln ‘ 𝑋 ) |
4 |
|
hoimbllem.a |
⊢ ( 𝜑 → 𝐴 : 𝑋 ⟶ ℝ ) |
5 |
|
hoimbllem.b |
⊢ ( 𝜑 → 𝐵 : 𝑋 ⟶ ℝ ) |
6 |
|
hoimbllem.h |
⊢ 𝐻 = ( 𝑥 ∈ Fin ↦ ( 𝑙 ∈ 𝑥 , 𝑦 ∈ ℝ ↦ X 𝑖 ∈ 𝑥 if ( 𝑖 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) ) ) |
7 |
1 2 4 5 6
|
hspdifhsp |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) [,) ( 𝐵 ‘ 𝑖 ) ) = ∩ 𝑖 ∈ 𝑋 ( ( 𝑖 ( 𝐻 ‘ 𝑋 ) ( 𝐵 ‘ 𝑖 ) ) ∖ ( 𝑖 ( 𝐻 ‘ 𝑋 ) ( 𝐴 ‘ 𝑖 ) ) ) ) |
8 |
1
|
vonmea |
⊢ ( 𝜑 → ( voln ‘ 𝑋 ) ∈ Meas ) |
9 |
8 3
|
dmmeasal |
⊢ ( 𝜑 → 𝑆 ∈ SAlg ) |
10 |
|
fict |
⊢ ( 𝑋 ∈ Fin → 𝑋 ≼ ω ) |
11 |
1 10
|
syl |
⊢ ( 𝜑 → 𝑋 ≼ ω ) |
12 |
9
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 𝑆 ∈ SAlg ) |
13 |
1
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 𝑋 ∈ Fin ) |
14 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 𝑖 ∈ 𝑋 ) |
15 |
5
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → 𝐵 : 𝑋 ⟶ ℝ ) |
16 |
15 14
|
ffvelrnd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐵 ‘ 𝑖 ) ∈ ℝ ) |
17 |
6 13 14 16
|
hspmbl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑖 ( 𝐻 ‘ 𝑋 ) ( 𝐵 ‘ 𝑖 ) ) ∈ dom ( voln ‘ 𝑋 ) ) |
18 |
3
|
eqcomi |
⊢ dom ( voln ‘ 𝑋 ) = 𝑆 |
19 |
18
|
a1i |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → dom ( voln ‘ 𝑋 ) = 𝑆 ) |
20 |
17 19
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑖 ( 𝐻 ‘ 𝑋 ) ( 𝐵 ‘ 𝑖 ) ) ∈ 𝑆 ) |
21 |
4
|
ffvelrnda |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝐴 ‘ 𝑖 ) ∈ ℝ ) |
22 |
6 13 14 21
|
hspmbl |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑖 ( 𝐻 ‘ 𝑋 ) ( 𝐴 ‘ 𝑖 ) ) ∈ dom ( voln ‘ 𝑋 ) ) |
23 |
22 19
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( 𝑖 ( 𝐻 ‘ 𝑋 ) ( 𝐴 ‘ 𝑖 ) ) ∈ 𝑆 ) |
24 |
|
saldifcl2 |
⊢ ( ( 𝑆 ∈ SAlg ∧ ( 𝑖 ( 𝐻 ‘ 𝑋 ) ( 𝐵 ‘ 𝑖 ) ) ∈ 𝑆 ∧ ( 𝑖 ( 𝐻 ‘ 𝑋 ) ( 𝐴 ‘ 𝑖 ) ) ∈ 𝑆 ) → ( ( 𝑖 ( 𝐻 ‘ 𝑋 ) ( 𝐵 ‘ 𝑖 ) ) ∖ ( 𝑖 ( 𝐻 ‘ 𝑋 ) ( 𝐴 ‘ 𝑖 ) ) ) ∈ 𝑆 ) |
25 |
12 20 23 24
|
syl3anc |
⊢ ( ( 𝜑 ∧ 𝑖 ∈ 𝑋 ) → ( ( 𝑖 ( 𝐻 ‘ 𝑋 ) ( 𝐵 ‘ 𝑖 ) ) ∖ ( 𝑖 ( 𝐻 ‘ 𝑋 ) ( 𝐴 ‘ 𝑖 ) ) ) ∈ 𝑆 ) |
26 |
9 11 2 25
|
saliincl |
⊢ ( 𝜑 → ∩ 𝑖 ∈ 𝑋 ( ( 𝑖 ( 𝐻 ‘ 𝑋 ) ( 𝐵 ‘ 𝑖 ) ) ∖ ( 𝑖 ( 𝐻 ‘ 𝑋 ) ( 𝐴 ‘ 𝑖 ) ) ) ∈ 𝑆 ) |
27 |
7 26
|
eqeltrd |
⊢ ( 𝜑 → X 𝑖 ∈ 𝑋 ( ( 𝐴 ‘ 𝑖 ) [,) ( 𝐵 ‘ 𝑖 ) ) ∈ 𝑆 ) |