| Step |
Hyp |
Ref |
Expression |
| 1 |
|
hspmbl.1 |
⊢ 𝐻 = ( 𝑥 ∈ Fin ↦ ( 𝑙 ∈ 𝑥 , 𝑦 ∈ ℝ ↦ X 𝑘 ∈ 𝑥 if ( 𝑘 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) ) ) |
| 2 |
|
hspmbl.x |
⊢ ( 𝜑 → 𝑋 ∈ Fin ) |
| 3 |
|
hspmbl.i |
⊢ ( 𝜑 → 𝐾 ∈ 𝑋 ) |
| 4 |
|
hspmbl.y |
⊢ ( 𝜑 → 𝑌 ∈ ℝ ) |
| 5 |
2
|
ovnome |
⊢ ( 𝜑 → ( voln* ‘ 𝑋 ) ∈ OutMeas ) |
| 6 |
|
eqid |
⊢ ∪ dom ( voln* ‘ 𝑋 ) = ∪ dom ( voln* ‘ 𝑋 ) |
| 7 |
|
eqid |
⊢ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) |
| 8 |
|
ovex |
⊢ ( -∞ (,) 𝑌 ) ∈ V |
| 9 |
|
reex |
⊢ ℝ ∈ V |
| 10 |
8 9
|
ifex |
⊢ if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ V |
| 11 |
10
|
ixpssmap |
⊢ X 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ⊆ ( ∪ 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ↑m 𝑋 ) |
| 12 |
|
iftrue |
⊢ ( 𝑝 = 𝐾 → if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) = ( -∞ (,) 𝑌 ) ) |
| 13 |
|
ioossre |
⊢ ( -∞ (,) 𝑌 ) ⊆ ℝ |
| 14 |
13
|
a1i |
⊢ ( 𝑝 = 𝐾 → ( -∞ (,) 𝑌 ) ⊆ ℝ ) |
| 15 |
12 14
|
eqsstrd |
⊢ ( 𝑝 = 𝐾 → if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ⊆ ℝ ) |
| 16 |
|
iffalse |
⊢ ( ¬ 𝑝 = 𝐾 → if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) = ℝ ) |
| 17 |
|
ssid |
⊢ ℝ ⊆ ℝ |
| 18 |
17
|
a1i |
⊢ ( ¬ 𝑝 = 𝐾 → ℝ ⊆ ℝ ) |
| 19 |
16 18
|
eqsstrd |
⊢ ( ¬ 𝑝 = 𝐾 → if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ⊆ ℝ ) |
| 20 |
15 19
|
pm2.61i |
⊢ if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ⊆ ℝ |
| 21 |
20
|
rgenw |
⊢ ∀ 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ⊆ ℝ |
| 22 |
|
iunss |
⊢ ( ∪ 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ⊆ ℝ ↔ ∀ 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ⊆ ℝ ) |
| 23 |
21 22
|
mpbir |
⊢ ∪ 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ⊆ ℝ |
| 24 |
|
mapss |
⊢ ( ( ℝ ∈ V ∧ ∪ 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ⊆ ℝ ) → ( ∪ 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ↑m 𝑋 ) ⊆ ( ℝ ↑m 𝑋 ) ) |
| 25 |
9 23 24
|
mp2an |
⊢ ( ∪ 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ↑m 𝑋 ) ⊆ ( ℝ ↑m 𝑋 ) |
| 26 |
11 25
|
sstri |
⊢ X 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ⊆ ( ℝ ↑m 𝑋 ) |
| 27 |
10
|
rgenw |
⊢ ∀ 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ V |
| 28 |
|
ixpexg |
⊢ ( ∀ 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ V → X 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ V ) |
| 29 |
27 28
|
ax-mp |
⊢ X 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ V |
| 30 |
|
elpwg |
⊢ ( X 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ V → ( X 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↔ X 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ⊆ ( ℝ ↑m 𝑋 ) ) ) |
| 31 |
29 30
|
ax-mp |
⊢ ( X 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↔ X 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ⊆ ( ℝ ↑m 𝑋 ) ) |
| 32 |
26 31
|
mpbir |
⊢ X 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) |
| 33 |
32
|
a1i |
⊢ ( 𝜑 → X 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 34 |
|
equid |
⊢ 𝑥 = 𝑥 |
| 35 |
|
eqid |
⊢ ℝ = ℝ |
| 36 |
|
equequ1 |
⊢ ( 𝑘 = 𝑝 → ( 𝑘 = 𝑙 ↔ 𝑝 = 𝑙 ) ) |
| 37 |
36
|
ifbid |
⊢ ( 𝑘 = 𝑝 → if ( 𝑘 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) = if ( 𝑝 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) ) |
| 38 |
37
|
cbvixpv |
⊢ X 𝑘 ∈ 𝑥 if ( 𝑘 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) = X 𝑝 ∈ 𝑥 if ( 𝑝 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) |
| 39 |
34 35 38
|
mpoeq123i |
⊢ ( 𝑙 ∈ 𝑥 , 𝑦 ∈ ℝ ↦ X 𝑘 ∈ 𝑥 if ( 𝑘 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) ) = ( 𝑙 ∈ 𝑥 , 𝑦 ∈ ℝ ↦ X 𝑝 ∈ 𝑥 if ( 𝑝 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) ) |
| 40 |
39
|
mpteq2i |
⊢ ( 𝑥 ∈ Fin ↦ ( 𝑙 ∈ 𝑥 , 𝑦 ∈ ℝ ↦ X 𝑘 ∈ 𝑥 if ( 𝑘 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) ) ) = ( 𝑥 ∈ Fin ↦ ( 𝑙 ∈ 𝑥 , 𝑦 ∈ ℝ ↦ X 𝑝 ∈ 𝑥 if ( 𝑝 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) ) ) |
| 41 |
1 40
|
eqtri |
⊢ 𝐻 = ( 𝑥 ∈ Fin ↦ ( 𝑙 ∈ 𝑥 , 𝑦 ∈ ℝ ↦ X 𝑝 ∈ 𝑥 if ( 𝑝 = 𝑙 , ( -∞ (,) 𝑦 ) , ℝ ) ) ) |
| 42 |
41 2 3 4
|
hspval |
⊢ ( 𝜑 → ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) = X 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ) |
| 43 |
2
|
ovnf |
⊢ ( 𝜑 → ( voln* ‘ 𝑋 ) : 𝒫 ( ℝ ↑m 𝑋 ) ⟶ ( 0 [,] +∞ ) ) |
| 44 |
43
|
fdmd |
⊢ ( 𝜑 → dom ( voln* ‘ 𝑋 ) = 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 45 |
44
|
unieqd |
⊢ ( 𝜑 → ∪ dom ( voln* ‘ 𝑋 ) = ∪ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 46 |
|
unipw |
⊢ ∪ 𝒫 ( ℝ ↑m 𝑋 ) = ( ℝ ↑m 𝑋 ) |
| 47 |
46
|
a1i |
⊢ ( 𝜑 → ∪ 𝒫 ( ℝ ↑m 𝑋 ) = ( ℝ ↑m 𝑋 ) ) |
| 48 |
45 47
|
eqtrd |
⊢ ( 𝜑 → ∪ dom ( voln* ‘ 𝑋 ) = ( ℝ ↑m 𝑋 ) ) |
| 49 |
48
|
pweqd |
⊢ ( 𝜑 → 𝒫 ∪ dom ( voln* ‘ 𝑋 ) = 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 50 |
42 49
|
eleq12d |
⊢ ( 𝜑 → ( ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ∈ 𝒫 ∪ dom ( voln* ‘ 𝑋 ) ↔ X 𝑝 ∈ 𝑋 if ( 𝑝 = 𝐾 , ( -∞ (,) 𝑌 ) , ℝ ) ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) ) |
| 51 |
33 50
|
mpbird |
⊢ ( 𝜑 → ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ∈ 𝒫 ∪ dom ( voln* ‘ 𝑋 ) ) |
| 52 |
|
simpl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom ( voln* ‘ 𝑋 ) ) → 𝜑 ) |
| 53 |
|
simpr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom ( voln* ‘ 𝑋 ) ) → 𝑎 ∈ 𝒫 ∪ dom ( voln* ‘ 𝑋 ) ) |
| 54 |
52 49
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom ( voln* ‘ 𝑋 ) ) → 𝒫 ∪ dom ( voln* ‘ 𝑋 ) = 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 55 |
53 54
|
eleqtrd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom ( voln* ‘ 𝑋 ) ) → 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) |
| 56 |
2
|
adantr |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) → 𝑋 ∈ Fin ) |
| 57 |
|
inss1 |
⊢ ( 𝑎 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ⊆ 𝑎 |
| 58 |
57
|
a1i |
⊢ ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) → ( 𝑎 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ⊆ 𝑎 ) |
| 59 |
|
elpwi |
⊢ ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) → 𝑎 ⊆ ( ℝ ↑m 𝑋 ) ) |
| 60 |
58 59
|
sstrd |
⊢ ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) → ( 𝑎 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ⊆ ( ℝ ↑m 𝑋 ) ) |
| 61 |
60
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) → ( 𝑎 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ⊆ ( ℝ ↑m 𝑋 ) ) |
| 62 |
56 61
|
ovnxrcl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) → ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∈ ℝ* ) |
| 63 |
59
|
adantl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) → 𝑎 ⊆ ( ℝ ↑m 𝑋 ) ) |
| 64 |
63
|
ssdifssd |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) → ( 𝑎 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ⊆ ( ℝ ↑m 𝑋 ) ) |
| 65 |
56 64
|
ovnxrcl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) → ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ∈ ℝ* ) |
| 66 |
62 65
|
xaddcld |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) ∈ ℝ* ) |
| 67 |
|
pnfge |
⊢ ( ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) ∈ ℝ* → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) ≤ +∞ ) |
| 68 |
66 67
|
syl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) ≤ +∞ ) |
| 69 |
68
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) ∧ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) = +∞ ) → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) ≤ +∞ ) |
| 70 |
|
id |
⊢ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) = +∞ → ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) = +∞ ) |
| 71 |
70
|
eqcomd |
⊢ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) = +∞ → +∞ = ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ) |
| 72 |
71
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) ∧ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) = +∞ ) → +∞ = ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ) |
| 73 |
69 72
|
breqtrd |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) ∧ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) = +∞ ) → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ) |
| 74 |
|
simpl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) ∧ ¬ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) = +∞ ) → ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) ) |
| 75 |
56 63
|
ovncl |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) → ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ∈ ( 0 [,] +∞ ) ) |
| 76 |
75
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) ∧ ¬ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) = +∞ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ∈ ( 0 [,] +∞ ) ) |
| 77 |
|
neqne |
⊢ ( ¬ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) = +∞ → ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ≠ +∞ ) |
| 78 |
77
|
adantl |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) ∧ ¬ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) = +∞ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ≠ +∞ ) |
| 79 |
|
ge0xrre |
⊢ ( ( ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ∈ ( 0 [,] +∞ ) ∧ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ≠ +∞ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ∈ ℝ ) |
| 80 |
76 78 79
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) ∧ ¬ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) = +∞ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ∈ ℝ ) |
| 81 |
56
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) ∧ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ∈ ℝ ) → 𝑋 ∈ Fin ) |
| 82 |
3
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) ∧ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ∈ ℝ ) → 𝐾 ∈ 𝑋 ) |
| 83 |
4
|
ad2antrr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) ∧ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ∈ ℝ ) → 𝑌 ∈ ℝ ) |
| 84 |
|
simpr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) ∧ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ∈ ℝ ) → ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ∈ ℝ ) |
| 85 |
63
|
adantr |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) ∧ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ∈ ℝ ) → 𝑎 ⊆ ( ℝ ↑m 𝑋 ) ) |
| 86 |
|
sseq1 |
⊢ ( 𝑎 = 𝑏 → ( 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) ↔ 𝑏 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) ) ) |
| 87 |
86
|
rabbidv |
⊢ ( 𝑎 = 𝑏 → { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } = { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑏 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) |
| 88 |
87
|
cbvmptv |
⊢ ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) = ( 𝑏 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑏 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) |
| 89 |
|
simpl |
⊢ ( ( 𝑖 = ℎ ∧ 𝑝 ∈ 𝑋 ) → 𝑖 = ℎ ) |
| 90 |
89
|
coeq2d |
⊢ ( ( 𝑖 = ℎ ∧ 𝑝 ∈ 𝑋 ) → ( [,) ∘ 𝑖 ) = ( [,) ∘ ℎ ) ) |
| 91 |
90
|
fveq1d |
⊢ ( ( 𝑖 = ℎ ∧ 𝑝 ∈ 𝑋 ) → ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) = ( ( [,) ∘ ℎ ) ‘ 𝑝 ) ) |
| 92 |
91
|
fveq2d |
⊢ ( ( 𝑖 = ℎ ∧ 𝑝 ∈ 𝑋 ) → ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) = ( vol ‘ ( ( [,) ∘ ℎ ) ‘ 𝑝 ) ) ) |
| 93 |
92
|
prodeq2dv |
⊢ ( 𝑖 = ℎ → ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) = ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ℎ ) ‘ 𝑝 ) ) ) |
| 94 |
93
|
cbvmptv |
⊢ ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) = ( ℎ ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ ℎ ) ‘ 𝑝 ) ) ) |
| 95 |
|
fveq2 |
⊢ ( 𝑛 = 𝑝 → ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑛 ) = ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑝 ) ) |
| 96 |
95
|
cbvixpv |
⊢ X 𝑛 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑛 ) = X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑝 ) |
| 97 |
96
|
a1i |
⊢ ( 𝑚 = ℎ → X 𝑛 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑛 ) = X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑝 ) ) |
| 98 |
|
fveq1 |
⊢ ( 𝑚 = ℎ → ( 𝑚 ‘ 𝑖 ) = ( ℎ ‘ 𝑖 ) ) |
| 99 |
98
|
coeq2d |
⊢ ( 𝑚 = ℎ → ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) = ( [,) ∘ ( ℎ ‘ 𝑖 ) ) ) |
| 100 |
99
|
fveq1d |
⊢ ( 𝑚 = ℎ → ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑝 ) = ( ( [,) ∘ ( ℎ ‘ 𝑖 ) ) ‘ 𝑝 ) ) |
| 101 |
100
|
ixpeq2dv |
⊢ ( 𝑚 = ℎ → X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑝 ) = X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑖 ) ) ‘ 𝑝 ) ) |
| 102 |
97 101
|
eqtrd |
⊢ ( 𝑚 = ℎ → X 𝑛 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑛 ) = X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑖 ) ) ‘ 𝑝 ) ) |
| 103 |
102
|
adantr |
⊢ ( ( 𝑚 = ℎ ∧ 𝑖 ∈ ℕ ) → X 𝑛 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑛 ) = X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑖 ) ) ‘ 𝑝 ) ) |
| 104 |
103
|
iuneq2dv |
⊢ ( 𝑚 = ℎ → ∪ 𝑖 ∈ ℕ X 𝑛 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑛 ) = ∪ 𝑖 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑖 ) ) ‘ 𝑝 ) ) |
| 105 |
104
|
sseq2d |
⊢ ( 𝑚 = ℎ → ( 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X 𝑛 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑛 ) ↔ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑖 ) ) ‘ 𝑝 ) ) ) |
| 106 |
105
|
cbvrabv |
⊢ { 𝑚 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X 𝑛 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑛 ) } = { ℎ ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑖 ) ) ‘ 𝑝 ) } |
| 107 |
|
fveq1 |
⊢ ( ℎ = 𝑙 → ( ℎ ‘ 𝑖 ) = ( 𝑙 ‘ 𝑖 ) ) |
| 108 |
107
|
coeq2d |
⊢ ( ℎ = 𝑙 → ( [,) ∘ ( ℎ ‘ 𝑖 ) ) = ( [,) ∘ ( 𝑙 ‘ 𝑖 ) ) ) |
| 109 |
108
|
fveq1d |
⊢ ( ℎ = 𝑙 → ( ( [,) ∘ ( ℎ ‘ 𝑖 ) ) ‘ 𝑝 ) = ( ( [,) ∘ ( 𝑙 ‘ 𝑖 ) ) ‘ 𝑝 ) ) |
| 110 |
109
|
ixpeq2dv |
⊢ ( ℎ = 𝑙 → X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑖 ) ) ‘ 𝑝 ) = X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑖 ) ) ‘ 𝑝 ) ) |
| 111 |
110
|
adantr |
⊢ ( ( ℎ = 𝑙 ∧ 𝑖 ∈ ℕ ) → X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑖 ) ) ‘ 𝑝 ) = X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑖 ) ) ‘ 𝑝 ) ) |
| 112 |
111
|
iuneq2dv |
⊢ ( ℎ = 𝑙 → ∪ 𝑖 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑖 ) ) ‘ 𝑝 ) = ∪ 𝑖 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑖 ) ) ‘ 𝑝 ) ) |
| 113 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑙 ‘ 𝑖 ) = ( 𝑙 ‘ 𝑗 ) ) |
| 114 |
113
|
coeq2d |
⊢ ( 𝑖 = 𝑗 → ( [,) ∘ ( 𝑙 ‘ 𝑖 ) ) = ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ) |
| 115 |
114
|
fveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( [,) ∘ ( 𝑙 ‘ 𝑖 ) ) ‘ 𝑝 ) = ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) ) |
| 116 |
115
|
ixpeq2dv |
⊢ ( 𝑖 = 𝑗 → X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑖 ) ) ‘ 𝑝 ) = X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) ) |
| 117 |
116
|
cbviunv |
⊢ ∪ 𝑖 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑖 ) ) ‘ 𝑝 ) = ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) |
| 118 |
117
|
a1i |
⊢ ( ℎ = 𝑙 → ∪ 𝑖 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑖 ) ) ‘ 𝑝 ) = ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) ) |
| 119 |
112 118
|
eqtrd |
⊢ ( ℎ = 𝑙 → ∪ 𝑖 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑖 ) ) ‘ 𝑝 ) = ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) ) |
| 120 |
119
|
sseq2d |
⊢ ( ℎ = 𝑙 → ( 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑖 ) ) ‘ 𝑝 ) ↔ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) ) ) |
| 121 |
120
|
cbvrabv |
⊢ { ℎ ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( ℎ ‘ 𝑖 ) ) ‘ 𝑝 ) } = { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } |
| 122 |
106 121
|
eqtri |
⊢ { 𝑚 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X 𝑛 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑛 ) } = { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } |
| 123 |
122
|
mpteq2i |
⊢ ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑚 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X 𝑛 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑛 ) } ) = ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) |
| 124 |
123
|
a1i |
⊢ ( 𝑐 = 𝑏 → ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑚 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X 𝑛 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑛 ) } ) = ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ) |
| 125 |
|
id |
⊢ ( 𝑐 = 𝑏 → 𝑐 = 𝑏 ) |
| 126 |
124 125
|
fveq12d |
⊢ ( 𝑐 = 𝑏 → ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑚 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X 𝑛 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑛 ) } ) ‘ 𝑐 ) = ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) ) |
| 127 |
126
|
eleq2d |
⊢ ( 𝑐 = 𝑏 → ( 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑚 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X 𝑛 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑛 ) } ) ‘ 𝑐 ) ↔ 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) ) ) |
| 128 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑝 → ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑚 ) ) = ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) |
| 129 |
128
|
cbvprodv |
⊢ ∏ 𝑚 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑚 ) ) = ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) |
| 130 |
129
|
mpteq2i |
⊢ ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑚 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑚 ) ) ) = ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) |
| 131 |
130
|
a1i |
⊢ ( 𝑚 = 𝑗 → ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑚 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑚 ) ) ) = ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ) |
| 132 |
|
fveq2 |
⊢ ( 𝑚 = 𝑗 → ( 𝑡 ‘ 𝑚 ) = ( 𝑡 ‘ 𝑗 ) ) |
| 133 |
131 132
|
fveq12d |
⊢ ( 𝑚 = 𝑗 → ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑚 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑚 ) ) ) ‘ ( 𝑡 ‘ 𝑚 ) ) = ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) |
| 134 |
133
|
cbvmptv |
⊢ ( 𝑚 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑚 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑚 ) ) ) ‘ ( 𝑡 ‘ 𝑚 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) |
| 135 |
134
|
a1i |
⊢ ( 𝑐 = 𝑏 → ( 𝑚 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑚 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑚 ) ) ) ‘ ( 𝑡 ‘ 𝑚 ) ) ) = ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) ) |
| 136 |
135
|
fveq2d |
⊢ ( 𝑐 = 𝑏 → ( Σ^ ‘ ( 𝑚 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑚 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑚 ) ) ) ‘ ( 𝑡 ‘ 𝑚 ) ) ) ) = ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) ) ) |
| 137 |
|
fveq2 |
⊢ ( 𝑐 = 𝑏 → ( ( voln* ‘ 𝑋 ) ‘ 𝑐 ) = ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) ) |
| 138 |
137
|
oveq1d |
⊢ ( 𝑐 = 𝑏 → ( ( ( voln* ‘ 𝑋 ) ‘ 𝑐 ) +𝑒 𝑠 ) = ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑠 ) ) |
| 139 |
136 138
|
breq12d |
⊢ ( 𝑐 = 𝑏 → ( ( Σ^ ‘ ( 𝑚 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑚 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑚 ) ) ) ‘ ( 𝑡 ‘ 𝑚 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑐 ) +𝑒 𝑠 ) ↔ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑠 ) ) ) |
| 140 |
127 139
|
anbi12d |
⊢ ( 𝑐 = 𝑏 → ( ( 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑚 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X 𝑛 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑛 ) } ) ‘ 𝑐 ) ∧ ( Σ^ ‘ ( 𝑚 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑚 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑚 ) ) ) ‘ ( 𝑡 ‘ 𝑚 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑐 ) +𝑒 𝑠 ) ) ↔ ( 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑠 ) ) ) ) |
| 141 |
140
|
rabbidva2 |
⊢ ( 𝑐 = 𝑏 → { 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑚 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X 𝑛 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑛 ) } ) ‘ 𝑐 ) ∣ ( Σ^ ‘ ( 𝑚 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑚 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑚 ) ) ) ‘ ( 𝑡 ‘ 𝑚 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑐 ) +𝑒 𝑠 ) } = { 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑠 ) } ) |
| 142 |
141
|
mpteq2dv |
⊢ ( 𝑐 = 𝑏 → ( 𝑠 ∈ ℝ+ ↦ { 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑚 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X 𝑛 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑛 ) } ) ‘ 𝑐 ) ∣ ( Σ^ ‘ ( 𝑚 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑚 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑚 ) ) ) ‘ ( 𝑡 ‘ 𝑚 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑐 ) +𝑒 𝑠 ) } ) = ( 𝑠 ∈ ℝ+ ↦ { 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑠 ) } ) ) |
| 143 |
|
eqidd |
⊢ ( 𝑠 = 𝑟 → ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) = ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) ) |
| 144 |
143
|
eleq2d |
⊢ ( 𝑠 = 𝑟 → ( 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) ↔ 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) ) ) |
| 145 |
|
oveq2 |
⊢ ( 𝑠 = 𝑟 → ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑠 ) = ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑟 ) ) |
| 146 |
145
|
breq2d |
⊢ ( 𝑠 = 𝑟 → ( ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑠 ) ↔ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑟 ) ) ) |
| 147 |
144 146
|
anbi12d |
⊢ ( 𝑠 = 𝑟 → ( ( 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑠 ) ) ↔ ( 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) ∧ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑟 ) ) ) ) |
| 148 |
147
|
rabbidva2 |
⊢ ( 𝑠 = 𝑟 → { 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑠 ) } = { 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑟 ) } ) |
| 149 |
148
|
cbvmptv |
⊢ ( 𝑠 ∈ ℝ+ ↦ { 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑠 ) } ) = ( 𝑟 ∈ ℝ+ ↦ { 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑟 ) } ) |
| 150 |
149
|
a1i |
⊢ ( 𝑐 = 𝑏 → ( 𝑠 ∈ ℝ+ ↦ { 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑠 ) } ) = ( 𝑟 ∈ ℝ+ ↦ { 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑟 ) } ) ) |
| 151 |
142 150
|
eqtrd |
⊢ ( 𝑐 = 𝑏 → ( 𝑠 ∈ ℝ+ ↦ { 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑚 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X 𝑛 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑛 ) } ) ‘ 𝑐 ) ∣ ( Σ^ ‘ ( 𝑚 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑚 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑚 ) ) ) ‘ ( 𝑡 ‘ 𝑚 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑐 ) +𝑒 𝑠 ) } ) = ( 𝑟 ∈ ℝ+ ↦ { 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑟 ) } ) ) |
| 152 |
151
|
cbvmptv |
⊢ ( 𝑐 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ ( 𝑠 ∈ ℝ+ ↦ { 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑚 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑖 ∈ ℕ X 𝑛 ∈ 𝑋 ( ( [,) ∘ ( 𝑚 ‘ 𝑖 ) ) ‘ 𝑛 ) } ) ‘ 𝑐 ) ∣ ( Σ^ ‘ ( 𝑚 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑚 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑚 ) ) ) ‘ ( 𝑡 ‘ 𝑚 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑐 ) +𝑒 𝑠 ) } ) ) = ( 𝑏 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ ( 𝑟 ∈ ℝ+ ↦ { 𝑡 ∈ ( ( 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ↦ { 𝑙 ∈ ( ( ( ℝ × ℝ ) ↑m 𝑋 ) ↑m ℕ ) ∣ 𝑎 ⊆ ∪ 𝑗 ∈ ℕ X 𝑝 ∈ 𝑋 ( ( [,) ∘ ( 𝑙 ‘ 𝑗 ) ) ‘ 𝑝 ) } ) ‘ 𝑏 ) ∣ ( Σ^ ‘ ( 𝑗 ∈ ℕ ↦ ( ( 𝑖 ∈ ( ( ℝ × ℝ ) ↑m 𝑋 ) ↦ ∏ 𝑝 ∈ 𝑋 ( vol ‘ ( ( [,) ∘ 𝑖 ) ‘ 𝑝 ) ) ) ‘ ( 𝑡 ‘ 𝑗 ) ) ) ) ≤ ( ( ( voln* ‘ 𝑋 ) ‘ 𝑏 ) +𝑒 𝑟 ) } ) ) |
| 153 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑝 → ( 1st ‘ ( ( 𝑡 ‘ 𝑗 ) ‘ 𝑚 ) ) = ( 1st ‘ ( ( 𝑡 ‘ 𝑗 ) ‘ 𝑝 ) ) ) |
| 154 |
153
|
cbvmptv |
⊢ ( 𝑚 ∈ 𝑋 ↦ ( 1st ‘ ( ( 𝑡 ‘ 𝑗 ) ‘ 𝑚 ) ) ) = ( 𝑝 ∈ 𝑋 ↦ ( 1st ‘ ( ( 𝑡 ‘ 𝑗 ) ‘ 𝑝 ) ) ) |
| 155 |
154
|
mpteq2i |
⊢ ( 𝑗 ∈ ℕ ↦ ( 𝑚 ∈ 𝑋 ↦ ( 1st ‘ ( ( 𝑡 ‘ 𝑗 ) ‘ 𝑚 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 𝑝 ∈ 𝑋 ↦ ( 1st ‘ ( ( 𝑡 ‘ 𝑗 ) ‘ 𝑝 ) ) ) ) |
| 156 |
|
fveq2 |
⊢ ( 𝑖 = 𝑗 → ( 𝑡 ‘ 𝑖 ) = ( 𝑡 ‘ 𝑗 ) ) |
| 157 |
156
|
fveq1d |
⊢ ( 𝑖 = 𝑗 → ( ( 𝑡 ‘ 𝑖 ) ‘ 𝑚 ) = ( ( 𝑡 ‘ 𝑗 ) ‘ 𝑚 ) ) |
| 158 |
157
|
fveq2d |
⊢ ( 𝑖 = 𝑗 → ( 2nd ‘ ( ( 𝑡 ‘ 𝑖 ) ‘ 𝑚 ) ) = ( 2nd ‘ ( ( 𝑡 ‘ 𝑗 ) ‘ 𝑚 ) ) ) |
| 159 |
158
|
mpteq2dv |
⊢ ( 𝑖 = 𝑗 → ( 𝑚 ∈ 𝑋 ↦ ( 2nd ‘ ( ( 𝑡 ‘ 𝑖 ) ‘ 𝑚 ) ) ) = ( 𝑚 ∈ 𝑋 ↦ ( 2nd ‘ ( ( 𝑡 ‘ 𝑗 ) ‘ 𝑚 ) ) ) ) |
| 160 |
|
2fveq3 |
⊢ ( 𝑚 = 𝑝 → ( 2nd ‘ ( ( 𝑡 ‘ 𝑗 ) ‘ 𝑚 ) ) = ( 2nd ‘ ( ( 𝑡 ‘ 𝑗 ) ‘ 𝑝 ) ) ) |
| 161 |
160
|
cbvmptv |
⊢ ( 𝑚 ∈ 𝑋 ↦ ( 2nd ‘ ( ( 𝑡 ‘ 𝑗 ) ‘ 𝑚 ) ) ) = ( 𝑝 ∈ 𝑋 ↦ ( 2nd ‘ ( ( 𝑡 ‘ 𝑗 ) ‘ 𝑝 ) ) ) |
| 162 |
161
|
a1i |
⊢ ( 𝑖 = 𝑗 → ( 𝑚 ∈ 𝑋 ↦ ( 2nd ‘ ( ( 𝑡 ‘ 𝑗 ) ‘ 𝑚 ) ) ) = ( 𝑝 ∈ 𝑋 ↦ ( 2nd ‘ ( ( 𝑡 ‘ 𝑗 ) ‘ 𝑝 ) ) ) ) |
| 163 |
159 162
|
eqtrd |
⊢ ( 𝑖 = 𝑗 → ( 𝑚 ∈ 𝑋 ↦ ( 2nd ‘ ( ( 𝑡 ‘ 𝑖 ) ‘ 𝑚 ) ) ) = ( 𝑝 ∈ 𝑋 ↦ ( 2nd ‘ ( ( 𝑡 ‘ 𝑗 ) ‘ 𝑝 ) ) ) ) |
| 164 |
163
|
cbvmptv |
⊢ ( 𝑖 ∈ ℕ ↦ ( 𝑚 ∈ 𝑋 ↦ ( 2nd ‘ ( ( 𝑡 ‘ 𝑖 ) ‘ 𝑚 ) ) ) ) = ( 𝑗 ∈ ℕ ↦ ( 𝑝 ∈ 𝑋 ↦ ( 2nd ‘ ( ( 𝑡 ‘ 𝑗 ) ‘ 𝑝 ) ) ) ) |
| 165 |
41 81 82 83 84 85 88 94 152 155 164
|
hspmbllem3 |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) ∧ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ∈ ℝ ) → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ) |
| 166 |
74 80 165
|
syl2anc |
⊢ ( ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) ∧ ¬ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) = +∞ ) → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ) |
| 167 |
73 166
|
pm2.61dan |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ( ℝ ↑m 𝑋 ) ) → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ) |
| 168 |
52 55 167
|
syl2anc |
⊢ ( ( 𝜑 ∧ 𝑎 ∈ 𝒫 ∪ dom ( voln* ‘ 𝑋 ) ) → ( ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∩ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) +𝑒 ( ( voln* ‘ 𝑋 ) ‘ ( 𝑎 ∖ ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ) ) ) ≤ ( ( voln* ‘ 𝑋 ) ‘ 𝑎 ) ) |
| 169 |
5 6 7 51 168
|
caragenel2d |
⊢ ( 𝜑 → ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ∈ ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |
| 170 |
2
|
dmvon |
⊢ ( 𝜑 → dom ( voln ‘ 𝑋 ) = ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) ) |
| 171 |
170
|
eqcomd |
⊢ ( 𝜑 → ( CaraGen ‘ ( voln* ‘ 𝑋 ) ) = dom ( voln ‘ 𝑋 ) ) |
| 172 |
169 171
|
eleqtrd |
⊢ ( 𝜑 → ( 𝐾 ( 𝐻 ‘ 𝑋 ) 𝑌 ) ∈ dom ( voln ‘ 𝑋 ) ) |